Two-dimensional cooling without repump laser beams through ion motional heating

0
Two-dimensional cooling without repump laser beams through ion motional heating
  • Zhukas, L. A., Millican, M. J., Svihra, P., Nomerotski, A. & Blinov, B. B. Direct observation of ion micromotion in a linear Paul trap. Phys. Rev. A 103, 023105 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Drewsen, M. & Brøner, A. Harmonic linear Paul trap: stability diagram and effective potentials. Phys. Rev. A 62, 045401 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Herskind, P. F., Dantan, A., Albert, M., Marler, J. P. & Drewsen, M. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Opt. Phys. 42, 154008 (2009).

    Article 
    ADS 

    Google Scholar 

  • Kato, A., Nomerotski, A. & Blinov, B. B. Micromotion-synchronized pulsed Doppler cooling of trapped ions. Phys. Rev. A 107, 023116 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Du, L. J. et al. Compensating for excess micromotion of ion crystals*. Chin. Phys. B 24, 083702 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Roos, C. Quantum Information Processing with Trapped Ions. in Fundamental Physics in Particle Traps (eds W. Quint & M. Vogel) 253–291 (Springer Berlin Heidelberg, 2014).

  • Wang, S. T., Shen, C. & Duan, L. M. Quantum computation under micromotion in a planar ion crystal. Sci. Rep. 5, 8555 (2015).

    Article 
    MATH 

    Google Scholar 

  • Wu, Y. K., Liu, Z. D., Zhao, W. D. & Duan, L. M. High-fidelity entangling gates in a three-dimensional ion crystal under micromotion. Phys. Rev. A 103, 022419 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bond, L., Lenstra, L., Gerritsma, R. & Safavi-Naini, A. Effect of micromotion and local stress in quantum simulations with trapped ions in optical tweezers. Phys. Rev. A 106, 042612 (2022).

    Article 
    ADS 

    Google Scholar 

  • Yu, Q. et al. Feasibility study of quantum computing using trapped electrons. Phys. Rev. A 105, 022420 (2022).

    Article 
    ADS 

    Google Scholar 

  • Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Margolis, H. S. et al. Hertz-Level measurement of the optical clock frequency in a single 88Sr+ Ion. Science 306, 1355–1358 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lee, W. et al. Micromotion compensation of trapped ions by qubit transition and direct scanning of dc voltages. Opt. Express 31, 33787–33798 (2023).

    Article 
    ADS 

    Google Scholar 

  • Liu, Y. et al. Minimization of the micromotion of trapped ions with artificial neural networks. Appl. Phys. Lett. 119, 134002 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Higgins, G. et al. Micromotion minimization using Ramsey interferometry. New J. Phys. 23, 123028 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Wang, B., Zhang, J. W., Lu, Z. H. & Wang, L. J. Direct measurement of micromotion speed in a linear quadrupole trap. J. Appl. Phys. 108, 013108 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Chuah, B. L., Lewty, N. C., Cazan, R. & Barrett, M. D. Detection of ion micromotion in a linear Paul trap with a high finesse cavity. Opt. Express 21, 10632–10641 (2013).

    Article 
    ADS 

    Google Scholar 

  • Raab, C. et al. Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. Phys. Rev. Lett. 85, 538–541 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhiqiang, Z., Arnold, K. J., Kaewuam, R. & Barrett, M. D. 176Lu+ clock comparison at the 10-18 level via correlation spectroscopy. Sci. Adv. 9, 1971 (2023).

    Article 
    MATH 

    Google Scholar 

  • Ratcliffe, A. K., Oberg, L. M. & Hope, J. J. Micromotion-enhanced fast entangling gates for trapped-ion quantum computing. Phys. Rev. A 101, 052332 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lysne, N. K., Niedermeyer, J. F., Wilson, A. C., Slichter, D. H. & Leibfried, D. Individual addressing and state readout of trapped ions utilizing radio-frequency micromotion. Phys. Rev. Lett. 133, 033201 (2024).

    Article 

    Google Scholar 

  • Kaplan, A. E. Single-particle motional oscillator powered by laser. Opt. Express 17, 10035–10043 (2009).

    Article 
    ADS 

    Google Scholar 

  • Saito, R. & Mukaiyama, T. Generation of a single-ion large oscillator. Phys. Rev. A 104, 053114 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Meis, C., Desaintfuscien, M. & Jardino, M. Analytical calculation of the space charge potential and the temperature of stored ions in an rf quadrupole trap. Appl. Phys. B 45, 59–64 (1988).

    Article 
    ADS 

    Google Scholar 

  • Miao, S. N. et al. Second-order Doppler frequency shifts of trapped ions in a linear Paul trap. Phys. Rev. A 106, 033121 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article 
    MATH 

    Google Scholar 

  • Puri, P. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019).

    Article 
    MATH 

    Google Scholar 

  • Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    Article 
    ADS 

    Google Scholar 

  • Hall, F. H. J. et al. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. Mol. Phys. 111, 2020–2032 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Mari, A. & Eisert, J. Cooling by heating: very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett. 108, 120602 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Younes, A. & Campbell, W. C. Laser-type cooling with unfiltered sunlight. Phys. Rev. E 109, 034109 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Cleuren, B., Rutten, B. & Van den Broeck, C. Cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 108, 120603 (2012).

    Article 
    ADS 

    Google Scholar 

  • Lien, C. Y. et al. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat. Commun. 5, 4783 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Sofikitis, D. et al. Vibrational cooling of cesium molecules using noncoherent broadband light. Phys. Rev. A 80, 051401 (2009).

    Article 
    ADS 

    Google Scholar 

  • Sofikitis, D. et al. Molecular vibrational cooling by optical pumping with shaped femtosecond pulses. New J. Phys. 11, 055037 (2009).

    Article 
    ADS 

    Google Scholar 

  • Viteau, M. et al. Optical pumping and vibrational cooling of molecules. Science 321, 232–234 (2008).

    Article 
    ADS 

    Google Scholar 

  • Nguyen, J. H. V. et al. Challenges of laser-cooling molecular ions. New J. Phys. 13, 063023 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Schowalter, S. J., Chen, K., Rellergert, W. G., Sullivan, S. T. & Hudson, E. R. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies. Rev. Sci. Instrum. 83, 043103 (2012).

    Article 
    ADS 

    Google Scholar 

  • Schneider, C., Schowalter, S. J., Chen, K., Sullivan, S. T. & Hudson, E. R. Laser-cooling-assisted mass spectrometry. Phys. Rev. Appl. 2, 034013 (2014).

    Article 
    ADS 

    Google Scholar 

  • Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom-ion hybrid trap. Science 357, 1370–1375 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yang, T. G. et al. Optical control of reactions between water and laser-cooled Be+ Ions. J. Phys. Chem. Lett. 9, 3555–3560 (2018).

    Article 
    MATH 

    Google Scholar 

  • Zhang, C. B., Offenberg, D., Roth, B., Wilson, M. A. & Schiller, S. Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap. Phys. Rev. A 76, 012719 (2007).

    Article 
    ADS 

    Google Scholar 

  • Willitsch, S., Bell, M. T., Gingell, A. D. & Softley, T. P. Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200 (2008).

    Article 
    MATH 

    Google Scholar 

  • Du, L. J. et al. Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation*. Chin. Phys. B 24, 113703 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Kiesenhofer, D. et al. Controlling two-dimensional coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Okada, K., Wada, M., Takayanagi, T., Ohtani, S. & Schuessler, H. A. Characterization of ion Coulomb crystals in a linear Paul trap. Phys. Rev. A 81, 013420 (2010).

    Article 
    ADS 

    Google Scholar 

  • Poindron, A., Pedregosa-Gutierrez, J., Jouvet, C., Knoop, M. & Champenois, C. Non-destructive detection of large molecules without mass limitation. J. Chem. Phys. 154, 184203 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gloger, T. F. et al. Ion-trajectory analysis for micromotion minimization and the measurement of small forces. Phys. Rev. A 92, 043421 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rajkovic, M., Benter, T. & Wißdorf, W. Molecular dynamics-based modeling of ion-neutral collisions in an open ion trajectory simulation framework. J. Am. Soc. Mass Spectrom. 34, 2156–2165 (2023).

    Article 
    MATH 

    Google Scholar 

  • Forbes, M. W., Sharifi, M., Croley, T., Lausevic, Z. & March, R. E. Simulation of ion trajectories in a quadrupole ion trap: a comparison of three simulation programs. J. Mass Spectrom. 34, 1219–1239 (1999).

    Article 
    ADS 

    Google Scholar 

  • Shen, L. & Yang, W. Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks. J. Chem. Theory Comput. 14, 1442–1455 (2018).

    Article 
    MATH 

    Google Scholar 

  • Zeng, J. Z., Cao, L. Q., Xu, M. Y., Zhu, T. & Zhang, J. Z. H. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat. Commun. 11, 5713 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhang, H. S., Zhou, Y. Z., Shen, Y. & Zou, H. X. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap. Acta Phys. Sin. 72, 013701 (2023).

    Article 

    Google Scholar 

  • Meng, Y. S. & Du, L. J. Study on the high-efficiency sympathetic cooling of mixed ion system with a large mass-to-charge ratio difference in a dual radio-frequency field by numerical simulations. Eur. Phys. J. D 75, 19 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Bentine, E., Foot, C. J. & Trypogeorgos, D. (py)LIon: a package for simulating trapped ion trajectories. Comput. Phys. Commun. 253, 107187 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Wesenberg, J. H. Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Ghadimi, M. et al. Dynamic compensation of stray electric fields in an ion trap using machine learning and adaptive algorithm. Sci. Rep. 12, 7067 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *