Two-dimensional cooling without repump laser beams through ion motional heating

Zhukas, L. A., Millican, M. J., Svihra, P., Nomerotski, A. & Blinov, B. B. Direct observation of ion micromotion in a linear Paul trap. Phys. Rev. A 103, 023105 (2021).
Google Scholar
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Google Scholar
Drewsen, M. & Brøner, A. Harmonic linear Paul trap: stability diagram and effective potentials. Phys. Rev. A 62, 045401 (2000).
Google Scholar
Herskind, P. F., Dantan, A., Albert, M., Marler, J. P. & Drewsen, M. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Opt. Phys. 42, 154008 (2009).
Google Scholar
Kato, A., Nomerotski, A. & Blinov, B. B. Micromotion-synchronized pulsed Doppler cooling of trapped ions. Phys. Rev. A 107, 023116 (2023).
Google Scholar
Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).
Google Scholar
Du, L. J. et al. Compensating for excess micromotion of ion crystals*. Chin. Phys. B 24, 083702 (2015).
Google Scholar
Roos, C. Quantum Information Processing with Trapped Ions. in Fundamental Physics in Particle Traps (eds W. Quint & M. Vogel) 253–291 (Springer Berlin Heidelberg, 2014).
Wang, S. T., Shen, C. & Duan, L. M. Quantum computation under micromotion in a planar ion crystal. Sci. Rep. 5, 8555 (2015).
Google Scholar
Wu, Y. K., Liu, Z. D., Zhao, W. D. & Duan, L. M. High-fidelity entangling gates in a three-dimensional ion crystal under micromotion. Phys. Rev. A 103, 022419 (2021).
Google Scholar
Bond, L., Lenstra, L., Gerritsma, R. & Safavi-Naini, A. Effect of micromotion and local stress in quantum simulations with trapped ions in optical tweezers. Phys. Rev. A 106, 042612 (2022).
Google Scholar
Yu, Q. et al. Feasibility study of quantum computing using trapped electrons. Phys. Rev. A 105, 022420 (2022).
Google Scholar
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).
Google Scholar
Margolis, H. S. et al. Hertz-Level measurement of the optical clock frequency in a single 88Sr+ Ion. Science 306, 1355–1358 (2004).
Google Scholar
Lee, W. et al. Micromotion compensation of trapped ions by qubit transition and direct scanning of dc voltages. Opt. Express 31, 33787–33798 (2023).
Google Scholar
Liu, Y. et al. Minimization of the micromotion of trapped ions with artificial neural networks. Appl. Phys. Lett. 119, 134002 (2021).
Google Scholar
Higgins, G. et al. Micromotion minimization using Ramsey interferometry. New J. Phys. 23, 123028 (2021).
Google Scholar
Wang, B., Zhang, J. W., Lu, Z. H. & Wang, L. J. Direct measurement of micromotion speed in a linear quadrupole trap. J. Appl. Phys. 108, 013108 (2010).
Google Scholar
Chuah, B. L., Lewty, N. C., Cazan, R. & Barrett, M. D. Detection of ion micromotion in a linear Paul trap with a high finesse cavity. Opt. Express 21, 10632–10641 (2013).
Google Scholar
Raab, C. et al. Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. Phys. Rev. Lett. 85, 538–541 (2000).
Google Scholar
Zhiqiang, Z., Arnold, K. J., Kaewuam, R. & Barrett, M. D. 176Lu+ clock comparison at the 10-18 level via correlation spectroscopy. Sci. Adv. 9, 1971 (2023).
Google Scholar
Ratcliffe, A. K., Oberg, L. M. & Hope, J. J. Micromotion-enhanced fast entangling gates for trapped-ion quantum computing. Phys. Rev. A 101, 052332 (2020).
Google Scholar
Lysne, N. K., Niedermeyer, J. F., Wilson, A. C., Slichter, D. H. & Leibfried, D. Individual addressing and state readout of trapped ions utilizing radio-frequency micromotion. Phys. Rev. Lett. 133, 033201 (2024).
Google Scholar
Kaplan, A. E. Single-particle motional oscillator powered by laser. Opt. Express 17, 10035–10043 (2009).
Google Scholar
Saito, R. & Mukaiyama, T. Generation of a single-ion large oscillator. Phys. Rev. A 104, 053114 (2021).
Google Scholar
Meis, C., Desaintfuscien, M. & Jardino, M. Analytical calculation of the space charge potential and the temperature of stored ions in an rf quadrupole trap. Appl. Phys. B 45, 59–64 (1988).
Google Scholar
Miao, S. N. et al. Second-order Doppler frequency shifts of trapped ions in a linear Paul trap. Phys. Rev. A 106, 033121 (2022).
Google Scholar
Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).
Google Scholar
Puri, P. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019).
Google Scholar
Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).
Google Scholar
Hall, F. H. J. et al. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. Mol. Phys. 111, 2020–2032 (2013).
Google Scholar
Mari, A. & Eisert, J. Cooling by heating: very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett. 108, 120602 (2012).
Google Scholar
Younes, A. & Campbell, W. C. Laser-type cooling with unfiltered sunlight. Phys. Rev. E 109, 034109 (2024).
Google Scholar
Cleuren, B., Rutten, B. & Van den Broeck, C. Cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 108, 120603 (2012).
Google Scholar
Lien, C. Y. et al. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat. Commun. 5, 4783 (2014).
Google Scholar
Sofikitis, D. et al. Vibrational cooling of cesium molecules using noncoherent broadband light. Phys. Rev. A 80, 051401 (2009).
Google Scholar
Sofikitis, D. et al. Molecular vibrational cooling by optical pumping with shaped femtosecond pulses. New J. Phys. 11, 055037 (2009).
Google Scholar
Viteau, M. et al. Optical pumping and vibrational cooling of molecules. Science 321, 232–234 (2008).
Google Scholar
Nguyen, J. H. V. et al. Challenges of laser-cooling molecular ions. New J. Phys. 13, 063023 (2011).
Google Scholar
Schowalter, S. J., Chen, K., Rellergert, W. G., Sullivan, S. T. & Hudson, E. R. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies. Rev. Sci. Instrum. 83, 043103 (2012).
Google Scholar
Schneider, C., Schowalter, S. J., Chen, K., Sullivan, S. T. & Hudson, E. R. Laser-cooling-assisted mass spectrometry. Phys. Rev. Appl. 2, 034013 (2014).
Google Scholar
Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom-ion hybrid trap. Science 357, 1370–1375 (2017).
Google Scholar
Yang, T. G. et al. Optical control of reactions between water and laser-cooled Be+ Ions. J. Phys. Chem. Lett. 9, 3555–3560 (2018).
Google Scholar
Zhang, C. B., Offenberg, D., Roth, B., Wilson, M. A. & Schiller, S. Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap. Phys. Rev. A 76, 012719 (2007).
Google Scholar
Willitsch, S., Bell, M. T., Gingell, A. D. & Softley, T. P. Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200 (2008).
Google Scholar
Du, L. J. et al. Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation*. Chin. Phys. B 24, 113703 (2015).
Google Scholar
Kiesenhofer, D. et al. Controlling two-dimensional coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).
Google Scholar
Okada, K., Wada, M., Takayanagi, T., Ohtani, S. & Schuessler, H. A. Characterization of ion Coulomb crystals in a linear Paul trap. Phys. Rev. A 81, 013420 (2010).
Google Scholar
Poindron, A., Pedregosa-Gutierrez, J., Jouvet, C., Knoop, M. & Champenois, C. Non-destructive detection of large molecules without mass limitation. J. Chem. Phys. 154, 184203 (2021).
Google Scholar
Gloger, T. F. et al. Ion-trajectory analysis for micromotion minimization and the measurement of small forces. Phys. Rev. A 92, 043421 (2015).
Google Scholar
Rajkovic, M., Benter, T. & Wißdorf, W. Molecular dynamics-based modeling of ion-neutral collisions in an open ion trajectory simulation framework. J. Am. Soc. Mass Spectrom. 34, 2156–2165 (2023).
Google Scholar
Forbes, M. W., Sharifi, M., Croley, T., Lausevic, Z. & March, R. E. Simulation of ion trajectories in a quadrupole ion trap: a comparison of three simulation programs. J. Mass Spectrom. 34, 1219–1239 (1999).
Google Scholar
Shen, L. & Yang, W. Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks. J. Chem. Theory Comput. 14, 1442–1455 (2018).
Google Scholar
Zeng, J. Z., Cao, L. Q., Xu, M. Y., Zhu, T. & Zhang, J. Z. H. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat. Commun. 11, 5713 (2020).
Google Scholar
Zhang, H. S., Zhou, Y. Z., Shen, Y. & Zou, H. X. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap. Acta Phys. Sin. 72, 013701 (2023).
Google Scholar
Meng, Y. S. & Du, L. J. Study on the high-efficiency sympathetic cooling of mixed ion system with a large mass-to-charge ratio difference in a dual radio-frequency field by numerical simulations. Eur. Phys. J. D 75, 19 (2021).
Google Scholar
Bentine, E., Foot, C. J. & Trypogeorgos, D. (py)LIon: a package for simulating trapped ion trajectories. Comput. Phys. Commun. 253, 107187 (2020).
Google Scholar
Wesenberg, J. H. Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008).
Google Scholar
Ghadimi, M. et al. Dynamic compensation of stray electric fields in an ion trap using machine learning and adaptive algorithm. Sci. Rep. 12, 7067 (2022).
Google Scholar
link