Unveiling hydrogen chemical states in supersaturated amorphous alumina via machine learning-driven atomistic modeling

0
Unveiling hydrogen chemical states in supersaturated amorphous alumina via machine learning-driven atomistic modeling
  • Nemanič, V. Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nucl. Mater. Energy 19, 451–457 (2019).

    Article 

    Google Scholar 

  • Khosravanian, A. et al. Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. Int. J. Hydrogen Energy 43, 2803–2816 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hankoy, M. et al. Enhancing the hydrogen permeation of alumina composite porous membranes via graphene oxide addition. Int. J. Hydrogen Energy 48, 1380–1390 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wei, Y., Yang, W. & Yang, Z. An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. Int. J. Hydrogen Energy 47, 9537–9565 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, G. et al. Photocatalytic hydrogen evolution of nanoporous CoFe2O4 and NiFe2O4 for water splitting. Int. J. Hydrogen Energy 46, 5369–5377 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Crystalline-to-amorphous transformation of tantalum-containing oxides for a superior performance in unassisted photocatalytic water splitting. Int. J. Hydrogen Energy 42, 21006–21015 (2017).

    Article 
    CAS 

    Google Scholar 

  • Qin, M., Hu, Q. & Cheng, Y. F. Passivation of X80 pipeline steel in a carbonate/bicarbonate solution and the effect of oxide film on hydrogen atom permeation into the steel. Int. J. Hydrogen Energy 70, 1–9 (2024).

    Article 
    CAS 

    Google Scholar 

  • Huang, F. et al. Effect of sulfide films formed on X65 steel surface on hydrogen permeation in H2S environments. Int. J. Hydrogen Energy 42, 4561–4570 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ohaeri, E., Eduok, U. & Szpunar, J. Hydrogen related degradation in pipeline steel: a review. Int. J. Hydrogen Energy 43, 14584–14617 (2018).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Mechanism and evaluation of hydrogen permeation barriers: a critical review. Ind. Eng. Chem. Res. 62, 15752–15773 (2023).

    Article 
    CAS 

    Google Scholar 

  • Plutnar, J. & Pumera, M. Applications of atomic layer deposition in design of systems for energy conversion. Small 17, 2102088 (2021).

    Article 
    CAS 

    Google Scholar 

  • Karimzadeh, S., Safaei, B., Yuan, C. & Jen, T.-C. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy Rev. 6, 24 (2023).

    Article 
    CAS 

    Google Scholar 

  • Meng, X. Atomic and molecular layer deposition in pursuing better batteries. J. Mater. Res. 36, 2–25 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nilsen, O., Gandrud, K. B., Amund, R. & Helmer, F. Atomic layer deposition for thin-film lithium-ion batteries. In: Atomic layer deposition in energy conversion applications, 183–207, (Wiley, 2017).

  • Guerra-Nuñez, C., Park, H. G. & Utke, I. Atomic Layer Deposition for Surface and Interface Engineering in Nanostructured Photovoltaic Devices. In: Atomic Layer Deposition in Energy Conversion Applications, 119–148, (Wiley, 2017).

  • Gupta, B. et al. Recent advances in materials design using atomic layer deposition for energy applications. Adv. Funct. Mater. 32, 2109105 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xing, Z. et al. Atomic layer deposition of metal oxides in perovskite solar cells: present and future. Small Methods 4, 2000588 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shen, C., Yin, Z., Collins, F. & Pinna, N. Atomic layer deposition of metal oxides and chalcogenides for high performance transistors. Adv. Sci. 9, 2104599 (2022).

    Article 
    CAS 

    Google Scholar 

  • Choi, A. R. et al. Review of material properties of oxide semiconductor thin films grown by atomic layer deposition for next-generation 3D dynamic random-access memory devices. Chem. Mater. (2024).

  • O’Neill, B. J. et al. Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015).

    Article 

    Google Scholar 

  • Singh, J. A., Yang, N. & Bent, S. F. Nanoengineering heterogeneous catalysts by atomic layer deposition. Annu. Rev. Chem. Biomol. Eng. 8, 41–62 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Marichy, C. & Pinna, N. Atomic layer deposition to materials for gas sensing applications. Adv. Mater. Interfaces 3, 1600335 (2016).

    Article 

    Google Scholar 

  • Graniel, O., Weber, M., Balme, S., Miele, P. & Bechelany, M. Atomic layer deposition for biosensing applications. Biosens. Bioelectron. 122, 147–159 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weber, M., Julbe, A., Ayral, A., Miele, P. & Bechelany, M. Atomic layer deposition for membranes: basics, challenges, and opportunities. Chem. Mater. 30, 7368–7390 (2018).

    Article 
    CAS 

    Google Scholar 

  • Behroozi, A. H., Vatanpour, V., Meunier, L., Mehrabi, M. & Koupaie, E. H. Membrane fabrication and modification by atomic layer deposition: processes and applications in water treatment and gas separation. ACS Appl. Mater. Interfaces 15, 13825–13843 (2023).

    CAS 

    Google Scholar 

  • Gong, N. et al. Atomic layer deposition of Al2O3 thin films for corrosion protections of additive manufactured and wrought stainless steels 316L. Mater. Lett. 331, 133434 (2023).

    Article 
    CAS 

    Google Scholar 

  • Santinacci, L. Atomic layer deposition: an efficient tool for corrosion protection. Curr. Opin. Colloid Interface Sci. 63, 101674 (2023).

    Article 
    CAS 

    Google Scholar 

  • Johnson, R. W., Hultqvist, A. & Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014).

    Article 
    CAS 

    Google Scholar 

  • George, S., Pandit, P. & Gupta, A. B. Residual aluminium in water defluoridated using activated alumina adsorption – modeling and simulation studies. Water Res. 44, 3055–3064 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Detavernier, C., Dendooven, J., Pulinthanathu Sree, S., Ludwig, K. F. & Martens, J. A. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 40, 5242–5253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keuter, T. et al. Modeling precursor diffusion and reaction of atomic layer deposition in porous structures. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 33, 01A104 (2015).

  • Zhang, J., Li, Y., Cao, K. & Chen, R. Advances in atomic layer deposition. Nanomanufacturing Metrol. 5, 191–208 (2022).

    Article 

    Google Scholar 

  • Lim, B. S., Rahtu, A. & Gordon, R. G. Atomic layer deposition of transition metals. Nat. Mater. 2, 749–754 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, K. et al. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 5, 4781 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ritala, M. et al. Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 288, 319–321 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ponraj, J. S., Attolini, G. & Bosi, M. Review on atomic layer deposition and applications of oxide thin films. Crit. Rev. Solid State Mater. Sci. 38, 203–233 (2013).

    Article 
    CAS 

    Google Scholar 

  • Macco, B. & Kessels, W. M. M. E. Atomic layer deposition of conductive and semiconductive oxides. Appl. Phys. Rev. 9, 41313 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sønsteby, H. H., Fjellvåg, H. & Nilsen, O. Functional perovskites by atomic layer deposition – an overview. Adv. Mater. Interfaces 4, 1600903 (2017).

    Article 

    Google Scholar 

  • Mackus, A. J. M., Schneider, J. R., MacIsaac, C., Baker, J. G. & Bent, S. F. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem. Mater. 31, 1142–1183 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hao, W., Marichy, C. & Journet, C. Atomic layer deposition of stable 2D materials. 2D Mater. 6, 12001 (2018).

    Article 

    Google Scholar 

  • Guerra-Nuñez, C., Döbeli, M., Michler, J. & Utke, I. Reaction and growth mechanisms in Al2O3 deposited via atomic layer deposition: elucidating the hydrogen source. Chem. Mater. 29, 8690–8703 (2017).

    Article 

    Google Scholar 

  • Cancellieri, C. et al. Effect of hydrogen on the chemical state, stoichiometry and density of amorphous Al2O3 films grown by thermal atomic layer deposition. Surf. Interface Anal. 56, 293–304 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ruoho, M. et al. Thin-film engineering of mechanical fragmentation properties of atomic-layer-deposited metal oxide. Nanomaterials 10, 558 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, J. M., Larsson, K., Lu, J., Olsson, E. & Hjörvarsson, B. Role of hydrogen for the elastic properties of alumina thin films. Appl. Phys. Lett. 80, 1144–1146 (2002).

    Article 
    CAS 

    Google Scholar 

  • Kim, S. et al. Influence of growth temperature on dielectric strength of Al2O3 thin films prepared via atomic layer deposition at low temperature. Sci. Rep. 12, 5124 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorham, C. S., Gaskins, J. T., Parsons, G. N., Losego, M. D. & Hopkins, P. E. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3). Appl. Phys. Lett. 104, 253107 (2014).

    Article 

    Google Scholar 

  • Moretti, G. Auger parameter shifts in the case of the non-local screening mechanism: applications of the electrostatic model to molecules, solids and adsorbed species. Surf. Interface Anal. 17, 352–356 (1991).

    Article 
    CAS 

    Google Scholar 

  • Jeurgens, L., Sloof, W., Tichelaar, F. & Mittemeijer, E. Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Phys. Rev. B Condens. Matter Mater. Phys. 62, 4707–4719 (2000).

    Article 
    CAS 

    Google Scholar 

  • Snijders, P. C., Jeurgens, L. P. H. & Sloof, W. G. Structural ordering of ultra-thin, amorphous aluminium-oxide films. Surf. Sci. 589, 98–105 (2005).

    Article 
    CAS 

    Google Scholar 

  • Reichel, F., Jeurgens, L. P. H. H., Richter, G. & Mittemeijer, E. J. Amorphous versus crystalline state for ultrathin Al2O3 overgrowths on Al substrates. J. Appl. Phys. 103, 093515 (2008).

  • Wang, J., Yu, Y. H., Lee, S. C. & Chung, Y. W. Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition. Surf. Coatings Technol. 146-147, 189–194 (2001).

    Article 
    CAS 

    Google Scholar 

  • Angarita, G., Palacio, C., Trujillo, M. & Arroyave, M. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method. J. Phys. Conf. Ser. 850, 1–4 (2017).

    Article 

    Google Scholar 

  • Hu, Z., Shi, J. & Heath Turner, C. Molecular dynamics simulation of the Al2O3 film structure during atomic layer deposition. Mol. Simul. 35, 270–279 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pugliese, A. et al. Atomic-layer-deposited aluminum oxide thin films probed with X-ray scattering and compared to molecular dynamics and density functional theory models. ACS Omega 7, 41033–41043 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christie, J. K. Review: understanding the properties of amorphous materials with high-performance computing methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 381, 20220251 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gramatte, S., Turlo, V. & Politano, O. Do we really need machine learning interatomic potentials for modeling amorphous metal oxides? Case study on amorphous alumina by recycling an existing ab initio database. Model. Simul. Mater. Sci. Eng. 32, 45010 (2024).

    Article 

    Google Scholar 

  • Strand, J. & Shluger, A. L. On the structure of oxygen deficient amorphous oxide films. Adv. Sci. 2306243, 1–14 (2023).

    Google Scholar 

  • Li, W., Ando, Y. & Watanabe, S. Effects of density and composition on the properties of amorphous alumina: A high-dimensional neural network potential study. J. Chem. Phys.153, 164119 (2020).

  • Takamoto, S. et al. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 13, 2991 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wefers, K. & Misra, C. Oxides and hydroxides of aluminum. Alcoa Tech. Pap. 19, 1–100 (1987).

    Google Scholar 

  • Dupree, R., Farnan, I., Forty, A. J., El-Mashri, S. & Bottyan, L. A mass NMR study of the structure of amorphous alumina films. Le J. Phys. Colloq. 46, C8–113–C8–117 (1985).

    Google Scholar 

  • Poe, B. T., McMillan, P. F., Cote, B., Massiot, D. & Coutures, J. P. Silica-alumina liquids: in-situ study by high-temperature aluminum-27 NMR spectroscopy and molecular dynamics simulation. J. Phys. Chem. 96, 8220–8224 (1992).

    Article 
    CAS 

    Google Scholar 

  • Ansell, S. et al. Structure of liquid aluminum oxide. Phys. Rev. Lett. 78, 464–466 (1997).

    Article 
    CAS 

    Google Scholar 

  • Cui, J. et al. Aluminum oxide thin films from aqueous solutions: insights from solid-state NMR and dielectric response. Chem. Mater. 30, 7456–7463 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gutiérrez, G., Belonoshko, A. B., Ahuja, R. & Johansson, B. Structural properties of liquid Al2O3 A molecular dynamics study. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61, 2723–2729 (2000).

    Article 

    Google Scholar 

  • Landron, C. et al. Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys. Rev. Lett. 86, 4839–4842 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gramatte, S. et al. Atomistic simulations of the crystalline-to-amorphous transformation of gamma-Al2O3 nanoparticles: delicate interplay between lattice distortions, stresses, and space charges. Langmuir 39, 6301–6315 (2022).

    Article 

    Google Scholar 

  • Snijders, P. C., Jeurgens, L. P. H. & Sloof, W. G. Structure of thin aluminium-oxide films determined from valence band spectra measured using XPS. Surf. Sci. 496, 97–109 (2002).

    Article 
    CAS 

    Google Scholar 

  • Yamaguchi, G., Yasui, I. & Chiu, W.-C. A new method of preparing theta-alumina and the interpretation of its X-Ray-powder diffraction pattern and electron diffraction pattern. Bull. Chem. Soc. Jpn. 43, 2487–2491 (1970).

    Article 
    CAS 

    Google Scholar 

  • Young, M. J. et al. Probing the atomic-scale structure of amorphous aluminum oxide grown by atomic layer deposition. ACS Appl. Mater. Interfaces 12, 22804–22814 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, Z., Ambrosio, F. & Pasquarello, A. Extrinsic defects in amorphous oxides: hydrogen, carbon, and nitrogen impurities in alumina. Phys. Rev. Appl. 11, 1 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sundar, A., Yu, J., Qi, L. & Nedim Cinbiz, M. High temperature stability and transport characteristics of hydrogen in alumina via multiscale computation. Int. J. Hydrogen Energy 47, 32345–32357 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tessman, J. R., Kahn, A. H. & Shockley, W. Electronic polarizabilities of ions in crystals. Phys. Rev. 92, 890–895 (1953).

    Article 
    CAS 

    Google Scholar 

  • Jeurgens, L. P. H., Reichel, F., Frank, S., Richter, G. & Mittemeijer, E. J. On the development of long-range order in ultra-thin amorphous Al2O3 films upon their transformation into crystalline gamma-Al2O3. Surf. Interface Anal. 40, 259–263 (2008).

    Article 
    CAS 

    Google Scholar 

  • Shannon, R. D. & Fischer, R. X. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1–28 (2006).

    Article 

    Google Scholar 

  • van Gog, H. First-principles study of dehydration interfaces between diaspore and corundum, gibbsite and boehmite, and boehmite and γ-Al2O3: Energetic stability, interface charge effects, and dehydration defects. Appl. Surf. Sci. 541, 148501 (2021).

  • Belonoshko, A. B., Rosengren, A., Dong, Q., Hultquist, G. & Leygraf, C. First-principles study of hydrogen diffusion in alpha – Al2O3 and liquid alumina. Phys. Rev. B Condens. Matter Mater. Phys. 69, 1–6 (2004).

    Article 

    Google Scholar 

  • Niemelä, J.-P. et al. Mechanical properties of atomic-layer-deposited Al2O3/Y2O3 nanolaminate films on aluminum toward protective coatings. ACS Appl. Nano Mater. 5, 6285–6296 (2022).

    Article 

    Google Scholar 

  • Edwards, T. E. J. et al. On the thinnest Al2O3 interlayers in Al-based nanolaminates to enhance strength, and the role of constraint. Acta Mater. 240, 118345 (2022).

    Article 
    CAS 

    Google Scholar 

  • Frankberg, E. J. et al. Highly ductile amorphous oxide at room temperature and high strain rate. Sci. (80-.). 366, 864–869 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, J.-S., Ji, J., Jeong, U. & Lee, B.-J. An atomistic simulation study on ductility of amorphous aluminum oxide. Acta Mater. 274, 119985 (2024).

    Article 
    CAS 

    Google Scholar 

  • Koo, J. et al. Evaluating mechanical properties of 100 nm-thick atomic layer deposited Al2O3 as a free-standing film. Scr. Mater. 187, 256–261 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, X. et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention. Acta Metall. Sin. 33, 759–773 (2020).

  • Yu, H. et al. Hydrogen embrittlement as a conspicuous material challenge –comprehensive review and future directions. Chem. Rev. 124, 6271–6392 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, R. M., Elleman, T. S., Hayne, P. & Verghese, K. Hydrogen permeability of sintered aluminum oxide. J. Am. Ceram. Soc. 62, 495–499 (1979).

    Article 
    CAS 

    Google Scholar 

  • Somjit, V. & Yildiz, B. Doping α-Al2O3 to reduce its hydrogen permeability: thermodynamic assessment of hydrogen defects and solubility from first principles. Acta Mater. 169, 172–183 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kronenberg, A., Castaing, J., Mitchell, T. & Kirby, S. Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600 and 1000 °C I. Infrared characterization of defects. Acta Mater. 48, 1481–1494 (2000).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H. et al. How solute atoms control aqueous corrosion of Al-alloys. Nat. Commun. 15, 561 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gopalan, H. et al. Influence of electrochemical hydrogen charging on the mechanical, diffusional, and interfacial properties of an amorphous alumina coating on Fe-8 wt% Cr alloy. J. Mater. Res. 39, 1812–1821 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ylivaara, O. M. et al. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion. Thin Solid Films 552, 124–135 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, X. & He, D. Atomic layer deposited aluminium oxide membranes for selective hydrogen separation through molecular sieving. J. Memb. Sci. 662, 121011 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aireddy, D. R., Yu, H., Cullen, D. A. & Ding, K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS Appl. Mater. Interfaces 14, 24290–24298 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar 

  • Asthagiri, D. N. & Beck, T. L. MD simulation of water using a rigid body description requires a small time step to ensure equipartition. J. Chem. Theory Comput. 20, 368–374 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Article 
    CAS 

    Google Scholar 

  • Larsen, A. H. The atomic simulation environment – a python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2012).

    Article 

    Google Scholar 

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 1–7 (2010).

    Article 

    Google Scholar 

  • Takamoto, S. et al. Matlantis, software as a service style material discovery tool. https://matlantis.com.

  • Gramatte, S. et al. Effect of hydrogen on the local chemical bonding states and structure of amorphous alumina by atomistic and electrostatic modeling of auger parameter shifts, (2024).

  • Seeger, M. Gaussian processes for machine learning University of California at Berkeley. Int. J. Neural Syst. 14, 69–109 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Brochu, E., Cora, V. M. & de Freitas, N. A Tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv, (2010).

  • Rasmussen, C. E. & Williams, C. K. I. Gaussian processes for machine learning, (The MIT Press, 2005).

  • Moretti, G. Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron Spectros. Relat. Phenomena 95, 95–144 (1998).

    Article 
    CAS 

    Google Scholar 

  • Nogueira, F. et al. Valence-band and chemical-state analyses of Zr and O in thermally grown thin zirconium-oxide films: an XPS study. Surf. Interface Anal. 496, 175–178 (1985).

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar 

  • Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999).

    Article 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article 
    CAS 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.132, 154104 (2010).

  • Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article 

    Google Scholar 

  • Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

  • Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 21, 084204 (2009).

  • Moretti, G. & Beck, H. P. Relationship between the Auger parameter and the ground state valence charge at the core-ionized site. Surf. Interface Anal. 52, 864–868 (2020).

    Article 
    CAS 

    Google Scholar 

  • Beck, H. P. & Moretti, G. Physical genetics: Cross-breeding density functional theory and X-ray photoelectron spectroscopy to rationalize chemical shifts of binding energies in solid compounds. Solid State Sci. 110, 106359 (2020).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *