Unravelling non-adiabatic pathways in the mutual neutralization of hydronium and hydroxide

0
Unravelling non-adiabatic pathways in the mutual neutralization of hydronium and hydroxide
  • Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mai, S., Marquetand, P. & González, L. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115, 1215–1231 (2015).

    Article 
    CAS 

    Google Scholar 

  • Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schnorr, K. et al. Direct tracking of ultrafast proton transfer in water dimers. Sci. Adv. 9, eadg7864 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luzon, I., Livshits, E., Gope, K., Baer, R. & Strasser, D. Making sense of Coulomb explosion imaging. J. Phys. Chem. Lett. 10, 1361–1367 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Livshits, E., Luzon, I., Gope, K., Baer, R. & Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gope, K., Livshits, E., Bittner, D. M., Baer, R. & Strasser, D. An “inverse” harpoon mechanism. Sci. Adv. 8, 2–9 (2022).

    Article 

    Google Scholar 

  • Yu, H. G. Spherical electron cloud hopping molecular dynamics simulation on dissociative recombination of protonated water. J. Phys. Chem. A 113, 6555–6561 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kayanuma, M., Taketsugu, T. & Ishii, K. Ab initio surface hopping simulation on dissociative recombination of H3O+. Chem. Phys. Lett. 418, 511–518 (2006).

    Article 
    CAS 

    Google Scholar 

  • Hassanali, A., Prakash, M. K., Eshet, H. & Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl Acad. Sci. USA 108, 20410–20415 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eklund, G. et al. Cryogenic merged-ion-beam experiments in DESIREE: final-state-resolved mutual neutralization of Li+ and D. Phys. Rev. A 102, 12823 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bogot, A. et al. The mutual neutralization of hydronium and hydroxide. Science 383, 285–289 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poline, M. et al. Final-state-resolved mutual neutralization in I+–I collisions. Phys. Rev. A 106, 012812 (2022).

    Article 
    CAS 

    Google Scholar 

  • Poline, M. et al. Mutual neutralization of NO+ with O. Phys. Rev. Lett. 132, 023001 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dochain, A., Andrianarijaona, V. M. & Urbain, X. Isotope effect for the mutual neutralization reaction at low collision energies: He+ + H. Phys. Rev. A 108, 042809 (2023).

    Article 
    CAS 

    Google Scholar 

  • Schmidt-May, A. F. et al. Observation of an isotope effect in state-selective mutual neutralization of lithium with hydrogen. Phys. Rev. A 108, 042810 (2023).

    Article 
    CAS 

    Google Scholar 

  • Schmidt, H. T. et al. Rotationally cold OH ions in the cryogenic electrostatic ion-beam storage ring DESIREE. Phys. Rev. Lett. 119, 079901 (2017).

    Article 

    Google Scholar 

  • Bogot, A., Lioubashevski, O., Heber, O., Zajfman, D. & Strasser, D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys. Chem. Chem. Phys. 25, 25701–25710 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl Acad. Sci. USA 116, 19294–19298 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehrgardi, M. A., Mofidfar, M. & Zare, R. N. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. J. Am. Chem. Soc. 144, 7606–7609 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skurski, P. & Simons, J. Two potential paths for OH radical formation on surfaces of pure water microdroplets. J. Chem. Phys. 160, 034708 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, K. et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc. Natl Acad. Sci. USA 120, 10868–10874 (2023).

    Google Scholar 

  • Chen, X. et al. Sprayed oil–water microdroplets as a hydrogen source. J. Am. Chem. Soc. 146, 10868–10874 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, J. R., Kim, J. B. & Lineberger, W. C. High-resolution threshold photodetachment spectroscopy of OH. Phys. Rev. A 55, 2036–2043 (1997).

    Article 
    CAS 

    Google Scholar 

  • Luo, M. & Jungen, M. The H3O Rydberg radical. Chem. Phys. 241, 297–303 (1999).

    Article 
    CAS 

    Google Scholar 

  • Ketvirtis, A. E. & Simons, J. Dissociative recombination of H3O+. J. Phys. Chem. 103, 6552–6563 (1999).

    Article 
    CAS 

    Google Scholar 

  • Hvelplund, P., Nielsen, S. B., Panja, S., Pedersen, J. O. P. & Uggerud, E. On the existence of the hypervalent H3O, H2DO, HD2O, and D3O radicals. Int. J. Mass spectrom. 281, 52–54 (2009).

    Article 
    CAS 

    Google Scholar 

  • Andersen, L. H. et al. Production of water molecules from dissociative recombination of H3O+ with electrons. Phys. Rev. Lett. 77, 4891–4894 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Production of vibrationally excited H2O from charge exchange of H3O+ with cesium. J. Chem. Phys. 130, 041102 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Vibrational excitation and product branching ratios in dissociation of the isotopologs of H3O: experiment and theory. J. Phys. Chem. A 117, 7256–7266 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buhr, H. et al. Hot water molecules from dissociative recombination of D3O+ with cold electrons. Phys. Rev. Lett. 105, 103202 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stillinger, F. H. & Weber, T. A. Polarization model study of isotope effects in the gas phase hydronium–hydroxide neutralization reaction. J. Chem. Phys. 76, 4028–4036 (1982).

    Article 
    CAS 

    Google Scholar 

  • Kiefer, P. M. & Hynes, J. T. Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment. J. Phys. Chem. A 107, 9022–9039 (2003).

    Article 
    CAS 

    Google Scholar 

  • Tiwari, A. K. & Sathyamurthy, N. Preferential scattering of one isotopomer over another in (He, HD+) collisions. Chem. Phys. Lett. 414, 509–513 (2005).

    Article 
    CAS 

    Google Scholar 

  • Grussie, F. et al. Merged-beams study of the reaction of cold HD+ with C atoms reveals a pronounced intramolecular kinetic isotope effect. Phys. Rev. Lett. 132, 243001 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ringnér, M. What is principal component analysis? Nat. Biotechnol. 26, 303–304 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Dalitz, R. H. On the analysis of τ-meson data and the nature of the τ-meson. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 44, 1068–1080 (1953).

    Article 
    CAS 

    Google Scholar 

  • Strasser, D. et al. Breakup dynamics and the isotope effect in H3+ and D3+ dissociative recombination. Phys. Rev. A 66, 032719 (2002).

    Article 

    Google Scholar 

  • Laperle, C. M., Mann, J. E., Clements, T. G. & Continetti, R. E. Three-body dissociation dynamics of the low-lying Rydberg states of H3 and D3. Phys. Rev. Lett. 93, 153202 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Strasser, D. et al. Breakup dynamics and isotope effects in D2H+ and H2D+ dissociative recombination. Phys. Rev. A 69, 064702 (2004).

    Article 

    Google Scholar 

  • Gope, K., Luzon, I. & Strasser, D. N–NO & NN–O bond cleavage dynamics in two- and three-body Coulomb explosion of the N2O2+ dication. Phys. Chem. Chem. Phys. 21, 13730–13737 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bittner, D. M., Gope, K., Livshits, E., Baer, R. & Strasser, D. Sequential and concerted C–C and C–O bond dissociation in the Coulomb explosion of 2-propanol. J. Chem. Phys. 157, 074309 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gope, K., Bittner, D. M. & Strasser, D. Sequential mechanism in H3+ formation dynamics on the ethanol dication. Phys. Chem. Chem. Phys. 25, 6979–6986 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gellene, G. I. & Porter, R. F. Experimental evidence for metastable states of D3O and its monohydrate by neutralized ion beam spectroscopy. J. Chem. Phys. 81, 5570–5576 (1984).

    Article 
    CAS 

    Google Scholar 

  • Blais, N. C. Monte Carlo trajectories: the dynamics of harpooning in alkali–halogen reactions. J. Chem. Phys. 49, 9–14 (1968).

    Article 
    CAS 

    Google Scholar 

  • Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. London. A 137, 696–702 (1932).

    Article 

    Google Scholar 

  • Ben Abu, N. et al. Sweet taste of heavy water. Commun. Biol. 4, 440 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stockett, M. H. et al. Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds. Nat. Commun. 14, 395 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, R. D. et al. The double electrostatic ion ring experiment: a unique cryogenic electrostatic storage ring for merged ion-beams studies. Rev. Sci. Instrum. 82, 065112 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, H. T. et al. First storage of ion beams in the double electrostatic ion-ring experiment: DESIREE. Rev. Sci. Instrum. 84, 055115 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Source of negative ions by cesium sputtering (SNICS). National Electrostatic Corporation https://www.pelletron.com/products/snics/

  • Fisher-Levine, M. & Nomerotski, A. TimepixCam: a fast optical imager with time-stamping. J. Instrum. 11, C03016 (2016).

  • Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nucl. Instrum. Methods Phys. Res. A 937, 26–30 (2019).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *