Unravelling non-adiabatic pathways in the mutual neutralization of hydronium and hydroxide

Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).
Google Scholar
Mai, S., Marquetand, P. & González, L. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115, 1215–1231 (2015).
Google Scholar
Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).
Google Scholar
Schnorr, K. et al. Direct tracking of ultrafast proton transfer in water dimers. Sci. Adv. 9, eadg7864 (2023).
Google Scholar
Luzon, I., Livshits, E., Gope, K., Baer, R. & Strasser, D. Making sense of Coulomb explosion imaging. J. Phys. Chem. Lett. 10, 1361–1367 (2019).
Google Scholar
Livshits, E., Luzon, I., Gope, K., Baer, R. & Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).
Google Scholar
Gope, K., Livshits, E., Bittner, D. M., Baer, R. & Strasser, D. An “inverse” harpoon mechanism. Sci. Adv. 8, 2–9 (2022).
Google Scholar
Yu, H. G. Spherical electron cloud hopping molecular dynamics simulation on dissociative recombination of protonated water. J. Phys. Chem. A 113, 6555–6561 (2009).
Google Scholar
Kayanuma, M., Taketsugu, T. & Ishii, K. Ab initio surface hopping simulation on dissociative recombination of H3O+. Chem. Phys. Lett. 418, 511–518 (2006).
Google Scholar
Hassanali, A., Prakash, M. K., Eshet, H. & Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl Acad. Sci. USA 108, 20410–20415 (2011).
Google Scholar
Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001).
Google Scholar
Eklund, G. et al. Cryogenic merged-ion-beam experiments in DESIREE: final-state-resolved mutual neutralization of Li+ and D−. Phys. Rev. A 102, 12823 (2020).
Google Scholar
Bogot, A. et al. The mutual neutralization of hydronium and hydroxide. Science 383, 285–289 (2024).
Google Scholar
Poline, M. et al. Final-state-resolved mutual neutralization in I+–I− collisions. Phys. Rev. A 106, 012812 (2022).
Google Scholar
Poline, M. et al. Mutual neutralization of NO+ with O−. Phys. Rev. Lett. 132, 023001 (2024).
Google Scholar
Dochain, A., Andrianarijaona, V. M. & Urbain, X. Isotope effect for the mutual neutralization reaction at low collision energies: He+ + H−. Phys. Rev. A 108, 042809 (2023).
Google Scholar
Schmidt-May, A. F. et al. Observation of an isotope effect in state-selective mutual neutralization of lithium with hydrogen. Phys. Rev. A 108, 042810 (2023).
Google Scholar
Schmidt, H. T. et al. Rotationally cold OH− ions in the cryogenic electrostatic ion-beam storage ring DESIREE. Phys. Rev. Lett. 119, 079901 (2017).
Google Scholar
Bogot, A., Lioubashevski, O., Heber, O., Zajfman, D. & Strasser, D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys. Chem. Chem. Phys. 25, 25701–25710 (2023).
Google Scholar
Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).
Google Scholar
Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl Acad. Sci. USA 116, 19294–19298 (2019).
Google Scholar
Mehrgardi, M. A., Mofidfar, M. & Zare, R. N. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. J. Am. Chem. Soc. 144, 7606–7609 (2022).
Google Scholar
Skurski, P. & Simons, J. Two potential paths for OH radical formation on surfaces of pure water microdroplets. J. Chem. Phys. 160, 034708 (2024).
Google Scholar
Li, K. et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc. Natl Acad. Sci. USA 120, 10868–10874 (2023).
Chen, X. et al. Sprayed oil–water microdroplets as a hydrogen source. J. Am. Chem. Soc. 146, 10868–10874 (2024).
Google Scholar
Smith, J. R., Kim, J. B. & Lineberger, W. C. High-resolution threshold photodetachment spectroscopy of OH−. Phys. Rev. A 55, 2036–2043 (1997).
Google Scholar
Luo, M. & Jungen, M. The H3O Rydberg radical. Chem. Phys. 241, 297–303 (1999).
Google Scholar
Ketvirtis, A. E. & Simons, J. Dissociative recombination of H3O+. J. Phys. Chem. 103, 6552–6563 (1999).
Google Scholar
Hvelplund, P., Nielsen, S. B., Panja, S., Pedersen, J. O. P. & Uggerud, E. On the existence of the hypervalent H3O, H2DO, HD2O, and D3O radicals. Int. J. Mass spectrom. 281, 52–54 (2009).
Google Scholar
Andersen, L. H. et al. Production of water molecules from dissociative recombination of H3O+ with electrons. Phys. Rev. Lett. 77, 4891–4894 (1996).
Google Scholar
Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Production of vibrationally excited H2O from charge exchange of H3O+ with cesium. J. Chem. Phys. 130, 041102 (2009).
Google Scholar
Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Vibrational excitation and product branching ratios in dissociation of the isotopologs of H3O: experiment and theory. J. Phys. Chem. A 117, 7256–7266 (2013).
Google Scholar
Buhr, H. et al. Hot water molecules from dissociative recombination of D3O+ with cold electrons. Phys. Rev. Lett. 105, 103202 (2010).
Google Scholar
Stillinger, F. H. & Weber, T. A. Polarization model study of isotope effects in the gas phase hydronium–hydroxide neutralization reaction. J. Chem. Phys. 76, 4028–4036 (1982).
Google Scholar
Kiefer, P. M. & Hynes, J. T. Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment. J. Phys. Chem. A 107, 9022–9039 (2003).
Google Scholar
Tiwari, A. K. & Sathyamurthy, N. Preferential scattering of one isotopomer over another in (He, HD+) collisions. Chem. Phys. Lett. 414, 509–513 (2005).
Google Scholar
Grussie, F. et al. Merged-beams study of the reaction of cold HD+ with C atoms reveals a pronounced intramolecular kinetic isotope effect. Phys. Rev. Lett. 132, 243001 (2024).
Google Scholar
Ringnér, M. What is principal component analysis? Nat. Biotechnol. 26, 303–304 (2008).
Google Scholar
Dalitz, R. H. On the analysis of τ-meson data and the nature of the τ-meson. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 44, 1068–1080 (1953).
Google Scholar
Strasser, D. et al. Breakup dynamics and the isotope effect in H3+ and D3+ dissociative recombination. Phys. Rev. A 66, 032719 (2002).
Google Scholar
Laperle, C. M., Mann, J. E., Clements, T. G. & Continetti, R. E. Three-body dissociation dynamics of the low-lying Rydberg states of H3 and D3. Phys. Rev. Lett. 93, 153202 (2004).
Google Scholar
Strasser, D. et al. Breakup dynamics and isotope effects in D2H+ and H2D+ dissociative recombination. Phys. Rev. A 69, 064702 (2004).
Google Scholar
Gope, K., Luzon, I. & Strasser, D. N–NO & NN–O bond cleavage dynamics in two- and three-body Coulomb explosion of the N2O2+ dication. Phys. Chem. Chem. Phys. 21, 13730–13737 (2019).
Google Scholar
Bittner, D. M., Gope, K., Livshits, E., Baer, R. & Strasser, D. Sequential and concerted C–C and C–O bond dissociation in the Coulomb explosion of 2-propanol. J. Chem. Phys. 157, 074309 (2022).
Google Scholar
Gope, K., Bittner, D. M. & Strasser, D. Sequential mechanism in H3+ formation dynamics on the ethanol dication. Phys. Chem. Chem. Phys. 25, 6979–6986 (2023).
Google Scholar
Gellene, G. I. & Porter, R. F. Experimental evidence for metastable states of D3O and its monohydrate by neutralized ion beam spectroscopy. J. Chem. Phys. 81, 5570–5576 (1984).
Google Scholar
Blais, N. C. Monte Carlo trajectories: the dynamics of harpooning in alkali–halogen reactions. J. Chem. Phys. 49, 9–14 (1968).
Google Scholar
Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. London. A 137, 696–702 (1932).
Google Scholar
Ben Abu, N. et al. Sweet taste of heavy water. Commun. Biol. 4, 440 (2021).
Google Scholar
Stockett, M. H. et al. Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds. Nat. Commun. 14, 395 (2023).
Google Scholar
Thomas, R. D. et al. The double electrostatic ion ring experiment: a unique cryogenic electrostatic storage ring for merged ion-beams studies. Rev. Sci. Instrum. 82, 065112 (2011).
Google Scholar
Schmidt, H. T. et al. First storage of ion beams in the double electrostatic ion-ring experiment: DESIREE. Rev. Sci. Instrum. 84, 055115 (2013).
Google Scholar
Source of negative ions by cesium sputtering (SNICS). National Electrostatic Corporation https://www.pelletron.com/products/snics/
Fisher-Levine, M. & Nomerotski, A. TimepixCam: a fast optical imager with time-stamping. J. Instrum. 11, C03016 (2016).
Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nucl. Instrum. Methods Phys. Res. A 937, 26–30 (2019).
Google Scholar
link