Quasicrystal synthesis by shock compression

Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).
Google Scholar
Tsai, A. P. Metallurgy of Quasicrystals. in Physical Properties of Quasicrystals (ed. Stadnik, Z. M.) 5–50 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-58434-3_2.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).
Google Scholar
Janot, C. Quasicrystals: A Primer. (Oxford University Press, Oxford, 2012).
Dubost, B., Lang, J.-M., Tanaka, M., Sainfort, P. & Audier, M. Large AlCuLi single quasicrystals with triacontahedral solidification morphology. Nature 324, 48–50 (1986).
Google Scholar
Tsai, A.-P., Inoue, A. & Masumoto, T. A Stable Quasicrystal in Al-Cu-Fe System. Jpn. J. Appl. Phys. 26, L1505 (1987).
Google Scholar
Tsai, A.-P. “Back to the Future”−An Account Discovery of Stable Quasicrystals. Acc. Chem. Res. 36, 31–38 (2003).
Google Scholar
Steurer, W. & Deloudi, S. Crystallography of Quasicrystals. vol. 126 (Springer, Berlin, 2009).
DiVincenzo, D. P. Perfect quasicrystals? Nature 340, 504–505 (1989).
Google Scholar
Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am. Mineralogist 96, 928–931 (2011).
Google Scholar
Oppenheim, J. et al. Shock synthesis of five-component icosahedral quasicrystals. Sci. Rep. 7, 15629 (2017).
Google Scholar
Prodan, A., Hren, R. D., van Midden, M. A., van Midden, H. J. P. & Zupanič, E. The equivalence between unit-cell twinning and tiling in icosahedral quasicrystals. Sci. Rep. 7, 12474 (2017).
Google Scholar
Németh, P. Shock-synthesized quasicrystals. IUCrJ 7, 368–369 (2020).
Google Scholar
Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D. & Harmelin, M. About the Al-Cu-Fe icosahedral phase formation. Mater. Sci. Eng.: A 133, 383–387 (1991).
Google Scholar
Holland-Moritz, D., Schroers, J., Grushko, B., Herlach, D. M. & Urban, K. Dependence of phase selection and micro structure of quasicrystal-forming Al-Cu-Fe alloys on the processing and solidification conditions. Mater. Sci. Eng.: A 226–228, 976–980 (1997).
Google Scholar
Rosas, G. & Perez, R. On the nature of quasicrystal phase transitions in AlCuFe alloys. Mater. Lett. 36, 229–234 (1998).
Google Scholar
Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Natural Quasicrystals. Science 324, 1306–1309 (2009).
Google Scholar
MacPherson, G. J. et al. Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia. Meteorit. Planet Sci. 48, 1499–1514 (2013).
Google Scholar
Lemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. Study of decagonal quasicrystalline phase formation in the AI-Ni-Fe alloy system. Philos. Mag. Lett. 69, 141–146 (1994).
Google Scholar
Tsai, A.-P., Inoue, A. & Masumoto, T. New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Mater. Trans., JIM 30, 150–154 (1989).
Google Scholar
Asimow, P. D. et al. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proc. Natl Acad. Sci. USA 113, 7077–7081 (2016).
Google Scholar
Hu, J., Asimow, P. D., Ma, C. & Bindi, L. First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment. IUCrJ 7, 434–444 (2020).
Google Scholar
Bindi, L., Lin, C., Ma, C. & Steinhardt, P. J. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Sci. Rep. 6, 38117 (2016).
Google Scholar
Agrosì, G. et al. A naturally occurring Al-Cu-Fe-Si quasicrystal in a micrometeorite from southern Italy. Commun. Earth Environ. 5, 1–6 (2024).
Google Scholar
Hollister, L. S. et al. Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nat. Commun. 5, (2014).
Williams, C. L. The New Frontier in Shock Recovery Experiments. in Structure-Property Relationships under Extreme Dynamic Environments: Shock Recovery Experiments (ed. Williams, C. L.) 107–109 (Springer International Publishing, Cham, 2019). https://doi.org/10.1007/978-3-031-79725-5_5.
Sekine, T. Shock Metamorphism and High-Pressure Phases in Meteorites. in Shock-Induced Chemistry (ed. Sekine, T.) 89–100 (Springer Nature, Singapore, 2024). https://doi.org/10.1007/978-981-97-3729-1_7.
Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 62, 676 (1949).
Google Scholar
Rinehart, J. S. Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack. J. Appl. Phys. 22, 555–560 (1951).
Google Scholar
De Carli, P. S. & Milton, D. J. Stishovite: Synthesis by Shock Wave. Science 147, 144–145 (1965).
Google Scholar
DeCarli, P. S. & Meyers, M. A. Design of Uniaxial Strain Shock Recovery Experiments. in Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications (eds. Meyers, M. A. & Murr, L. E.) 341–373 (Springer US, Boston, MA, 1981). https://doi.org/10.1007/978-1-4613-3219-0_22.
Meyers, M. A. Dynamic Behavior of Materials. (John Wiley & Sons, 1994).
Lin, C. et al. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Sci. Rep. 7, 1637 (2017).
Google Scholar
Marsh, S. P. LASL Shock Hugoniot Data. vol. 5 (Univ of California Press, 1980).
Petel, O. E. & Jetté, F. X. Comparison of methods for calculating the shock hugoniot of mixtures. Shock Waves 20, 73–83 (2010).
Google Scholar
McQueen, R. G. Shock waves in condensed media: Their properties and the equation of state of materials derived from them. in Proceedings of the International School of Physics “Enrico Fermi ”Course 113 (eds. Eliezer S. and Ricci R. A.) 101–215 (Amsterdam, 1991).
Oppenheim, J. et al. Shock Synthesis of Decagonal Quasicrystals. Sci. Rep. 7, 15628 (2017).
Google Scholar
Kelly, J. P. et al. Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments. J. Appl. Phys. 125, 145902 (2019).
Google Scholar
Takasaki, A. & Matsumoto, H. Synthesis of Ti-based bulk quasicrystal by shock compression. Adv. Powder Technol. 20, 395–397 (2009).
Google Scholar
Takagi, S., Ichiyanagi, K., Kawai, N., Nozawa, S. & Kyono, A. Experimental study on the formation of Al-Cu-Fe natural quasicrystal under meteorite collision condition. European Geosciences Union General Assembly 11085 (2018).
Huttunen-Saarivirta, E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review. J. Alloy. Compd. 363, 154–178 (2004).
Google Scholar
Zhang, L. & Lück, R. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system. MEKU 94, 91–97 (2003).
Google Scholar
Hu, J., Asimow, P. D. & Ma, C. Shock synthesis of Al-Fe-Cr-Cu-Ni icosahedral quasicrystal. AIP Conf. Proc. 2272, 100013 (2020).
Google Scholar
Pavlyuchkov, D., Balanetskyy, S., Kowalski, W., Surowiec, M. & Grushko, B. Stable decagonal quasicrystals in the Al-Fe-Cr and Al-Fe-Mn alloy systems. J. Alloy. Compd. 477, L41–L44 (2009).
Google Scholar
Kang, N. et al. On the microstructure, hardness and wear behavior of Al-Fe-Cr quasicrystal reinforced Al matrix composite prepared by selective laser melting. Mater. Des. 132, 105–111 (2017).
Google Scholar
Takasaki, A., Han, C. H., Furuya, Y. & Kelton, K. F. Synthesis of amorphous and quasicrystal phases by mechanical alloying of Ti45Zr38Ni17 powder mixtures, and their hydrogenation. Philos. Mag. Lett. 82, 353–361 (2002).
Google Scholar
Turquier, F., Cojocaru, V. D., Stir, M., Nicula, R. & Burkel, E. Synthesis of single-phase Al–Cu–Fe quasicrystals using high-energy ball-milling. J. Non-Crystalline Solids 353, 3417–3420 (2007).
Google Scholar
Bindi, L. et al. Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. Am. Mineralogist 100, 2340–2343 (2015).
Google Scholar
Nguyen, J. H. et al. Molybdenum sound velocity and shear modulus softening under shock compression. Phys. Rev. B 89, 174109 (2014).
Google Scholar
Xie, Y., Han, L.-B., An, Q., Zheng, L. & Luo, S.-N. Release melting of shock-loaded single crystal Cu. J. Appl. Phys. 105, 066103 (2009).
Google Scholar
Tan, H. & Ahrens, T. J. Shock temperature measurements for metals. High. Press. Res. 2, 159–182 (1990).
Google Scholar
Holland-Moritz, D., Schroers, J., Herlach, D. M., Grushko, B. & Urban, K. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl–Cu–Fe and Al–Cu–Co. Acta Materialia 46, 1601–1615 (1998).
Google Scholar
Stagno, V., Bindi, L., Steinhardt, P. J. & Fei, Y. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21GPa: Implications for the quasicrystal-bearing Khatyrka meteorite. Phys. Earth Planet. Inter. 271, 47–56 (2017).
Google Scholar
Sims, M. et al. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions. J. Appl. Phys. 132, 075902 (2022).
Google Scholar
Zhu, L., Soto-Medina, S., Cuadrado-Castillo, W., Hennig, R. G. & Manuel, M. V. New experimental studies on the phase diagram of the Al-Cu-Fe quasicrystal-forming system. Mater. Des. 185, 108186 (2019).
Google Scholar
Ding, Y., Northwood, D. O. & Alpas, A. T. Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications. Surf. Coat. Technol. 96, 140–147 (1997).
Google Scholar
link