Quasicrystal synthesis by shock compression

0
Quasicrystal synthesis by shock compression
  • Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article 
    CAS 

    Google Scholar 

  • Tsai, A. P. Metallurgy of Quasicrystals. in Physical Properties of Quasicrystals (ed. Stadnik, Z. M.) 5–50 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-58434-3_2.

  • Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article 
    CAS 

    Google Scholar 

  • Janot, C. Quasicrystals: A Primer. (Oxford University Press, Oxford, 2012).

  • Dubost, B., Lang, J.-M., Tanaka, M., Sainfort, P. & Audier, M. Large AlCuLi single quasicrystals with triacontahedral solidification morphology. Nature 324, 48–50 (1986).

    Article 
    CAS 

    Google Scholar 

  • Tsai, A.-P., Inoue, A. & Masumoto, T. A Stable Quasicrystal in Al-Cu-Fe System. Jpn. J. Appl. Phys. 26, L1505 (1987).

    Article 
    CAS 

    Google Scholar 

  • Tsai, A.-P. “Back to the Future”−An Account Discovery of Stable Quasicrystals. Acc. Chem. Res. 36, 31–38 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steurer, W. & Deloudi, S. Crystallography of Quasicrystals. vol. 126 (Springer, Berlin, 2009).

  • DiVincenzo, D. P. Perfect quasicrystals? Nature 340, 504–505 (1989).

    Article 

    Google Scholar 

  • Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am. Mineralogist 96, 928–931 (2011).

    Article 
    CAS 

    Google Scholar 

  • Oppenheim, J. et al. Shock synthesis of five-component icosahedral quasicrystals. Sci. Rep. 7, 15629 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prodan, A., Hren, R. D., van Midden, M. A., van Midden, H. J. P. & Zupanič, E. The equivalence between unit-cell twinning and tiling in icosahedral quasicrystals. Sci. Rep. 7, 12474 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Németh, P. Shock-synthesized quasicrystals. IUCrJ 7, 368–369 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D. & Harmelin, M. About the Al-Cu-Fe icosahedral phase formation. Mater. Sci. Eng.: A 133, 383–387 (1991).

    Article 

    Google Scholar 

  • Holland-Moritz, D., Schroers, J., Grushko, B., Herlach, D. M. & Urban, K. Dependence of phase selection and micro structure of quasicrystal-forming Al-Cu-Fe alloys on the processing and solidification conditions. Mater. Sci. Eng.: A 226–228, 976–980 (1997).

    Article 

    Google Scholar 

  • Rosas, G. & Perez, R. On the nature of quasicrystal phase transitions in AlCuFe alloys. Mater. Lett. 36, 229–234 (1998).

    Article 
    CAS 

    Google Scholar 

  • Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Natural Quasicrystals. Science 324, 1306–1309 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacPherson, G. J. et al. Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia. Meteorit. Planet Sci. 48, 1499–1514 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. Study of decagonal quasicrystalline phase formation in the AI-Ni-Fe alloy system. Philos. Mag. Lett. 69, 141–146 (1994).

    Article 
    CAS 

    Google Scholar 

  • Tsai, A.-P., Inoue, A. & Masumoto, T. New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Mater. Trans., JIM 30, 150–154 (1989).

    Article 
    CAS 

    Google Scholar 

  • Asimow, P. D. et al. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proc. Natl Acad. Sci. USA 113, 7077–7081 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J., Asimow, P. D., Ma, C. & Bindi, L. First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment. IUCrJ 7, 434–444 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bindi, L., Lin, C., Ma, C. & Steinhardt, P. J. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Sci. Rep. 6, 38117 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agrosì, G. et al. A naturally occurring Al-Cu-Fe-Si quasicrystal in a micrometeorite from southern Italy. Commun. Earth Environ. 5, 1–6 (2024).

    Article 

    Google Scholar 

  • Hollister, L. S. et al. Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nat. Commun. 5, (2014).

  • Williams, C. L. The New Frontier in Shock Recovery Experiments. in Structure-Property Relationships under Extreme Dynamic Environments: Shock Recovery Experiments (ed. Williams, C. L.) 107–109 (Springer International Publishing, Cham, 2019). https://doi.org/10.1007/978-3-031-79725-5_5.

  • Sekine, T. Shock Metamorphism and High-Pressure Phases in Meteorites. in Shock-Induced Chemistry (ed. Sekine, T.) 89–100 (Springer Nature, Singapore, 2024). https://doi.org/10.1007/978-981-97-3729-1_7.

  • Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 62, 676 (1949).

    Article 

    Google Scholar 

  • Rinehart, J. S. Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack. J. Appl. Phys. 22, 555–560 (1951).

    Article 

    Google Scholar 

  • De Carli, P. S. & Milton, D. J. Stishovite: Synthesis by Shock Wave. Science 147, 144–145 (1965).

    Article 
    PubMed 

    Google Scholar 

  • DeCarli, P. S. & Meyers, M. A. Design of Uniaxial Strain Shock Recovery Experiments. in Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications (eds. Meyers, M. A. & Murr, L. E.) 341–373 (Springer US, Boston, MA, 1981). https://doi.org/10.1007/978-1-4613-3219-0_22.

  • Meyers, M. A. Dynamic Behavior of Materials. (John Wiley & Sons, 1994).

  • Lin, C. et al. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Sci. Rep. 7, 1637 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marsh, S. P. LASL Shock Hugoniot Data. vol. 5 (Univ of California Press, 1980).

  • Petel, O. E. & Jetté, F. X. Comparison of methods for calculating the shock hugoniot of mixtures. Shock Waves 20, 73–83 (2010).

    Article 

    Google Scholar 

  • McQueen, R. G. Shock waves in condensed media: Their properties and the equation of state of materials derived from them. in Proceedings of the International School of Physics “Enrico Fermi ”Course 113 (eds. Eliezer S. and Ricci R. A.) 101–215 (Amsterdam, 1991).

  • Oppenheim, J. et al. Shock Synthesis of Decagonal Quasicrystals. Sci. Rep. 7, 15628 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, J. P. et al. Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments. J. Appl. Phys. 125, 145902 (2019).

    Article 

    Google Scholar 

  • Takasaki, A. & Matsumoto, H. Synthesis of Ti-based bulk quasicrystal by shock compression. Adv. Powder Technol. 20, 395–397 (2009).

    Article 
    CAS 

    Google Scholar 

  • Takagi, S., Ichiyanagi, K., Kawai, N., Nozawa, S. & Kyono, A. Experimental study on the formation of Al-Cu-Fe natural quasicrystal under meteorite collision condition. European Geosciences Union General Assembly 11085 (2018).

  • Huttunen-Saarivirta, E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review. J. Alloy. Compd. 363, 154–178 (2004).

    Article 

    Google Scholar 

  • Zhang, L. & Lück, R. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system. MEKU 94, 91–97 (2003).

    Article 
    CAS 

    Google Scholar 

  • Hu, J., Asimow, P. D. & Ma, C. Shock synthesis of Al-Fe-Cr-Cu-Ni icosahedral quasicrystal. AIP Conf. Proc. 2272, 100013 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pavlyuchkov, D., Balanetskyy, S., Kowalski, W., Surowiec, M. & Grushko, B. Stable decagonal quasicrystals in the Al-Fe-Cr and Al-Fe-Mn alloy systems. J. Alloy. Compd. 477, L41–L44 (2009).

    Article 
    CAS 

    Google Scholar 

  • Kang, N. et al. On the microstructure, hardness and wear behavior of Al-Fe-Cr quasicrystal reinforced Al matrix composite prepared by selective laser melting. Mater. Des. 132, 105–111 (2017).

    Article 
    CAS 

    Google Scholar 

  • Takasaki, A., Han, C. H., Furuya, Y. & Kelton, K. F. Synthesis of amorphous and quasicrystal phases by mechanical alloying of Ti45Zr38Ni17 powder mixtures, and their hydrogenation. Philos. Mag. Lett. 82, 353–361 (2002).

    Article 
    CAS 

    Google Scholar 

  • Turquier, F., Cojocaru, V. D., Stir, M., Nicula, R. & Burkel, E. Synthesis of single-phase Al–Cu–Fe quasicrystals using high-energy ball-milling. J. Non-Crystalline Solids 353, 3417–3420 (2007).

    Article 
    CAS 

    Google Scholar 

  • Bindi, L. et al. Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. Am. Mineralogist 100, 2340–2343 (2015).

    Article 

    Google Scholar 

  • Nguyen, J. H. et al. Molybdenum sound velocity and shear modulus softening under shock compression. Phys. Rev. B 89, 174109 (2014).

    Article 

    Google Scholar 

  • Xie, Y., Han, L.-B., An, Q., Zheng, L. & Luo, S.-N. Release melting of shock-loaded single crystal Cu. J. Appl. Phys. 105, 066103 (2009).

    Article 

    Google Scholar 

  • Tan, H. & Ahrens, T. J. Shock temperature measurements for metals. High. Press. Res. 2, 159–182 (1990).

    Article 

    Google Scholar 

  • Holland-Moritz, D., Schroers, J., Herlach, D. M., Grushko, B. & Urban, K. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl–Cu–Fe and Al–Cu–Co. Acta Materialia 46, 1601–1615 (1998).

    Article 
    CAS 

    Google Scholar 

  • Stagno, V., Bindi, L., Steinhardt, P. J. & Fei, Y. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21GPa: Implications for the quasicrystal-bearing Khatyrka meteorite. Phys. Earth Planet. Inter. 271, 47–56 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sims, M. et al. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions. J. Appl. Phys. 132, 075902 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, L., Soto-Medina, S., Cuadrado-Castillo, W., Hennig, R. G. & Manuel, M. V. New experimental studies on the phase diagram of the Al-Cu-Fe quasicrystal-forming system. Mater. Des. 185, 108186 (2019).

    Article 

    Google Scholar 

  • Ding, Y., Northwood, D. O. & Alpas, A. T. Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications. Surf. Coat. Technol. 96, 140–147 (1997).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *