Inhibiting and rejuvenating dead lithium in battery materials

0
Inhibiting and rejuvenating dead lithium in battery materials
  • Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article 

    Google Scholar 

  • Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q. et al. Recent advances and opportunities in reactivating inactive lithium in batteries. Angew. Chem. Int. Ed. 63, e202404554 (2024).

    Article 
    CAS 

    Google Scholar 

  • Tao, M. et al. Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries. J. Energy Chem. 96, 226–248 (2024).

    Article 
    CAS 

    Google Scholar 

  • Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, R. et al. Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palacin, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palanisamy, M., Parekh, M. H. & Pol, V. G. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life. Adv. Funct. Mater. 30, 2003668 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).

    Article 
    CAS 

    Google Scholar 

  • McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qian, X. et al. Revitalizing dead zinc with ferrocene/ferrocenium redox chemistry for deep-cycle zinc metal batteries. Angew. Chem. Int. Ed. 64, e202412989 (2025).

    Article 
    CAS 

    Google Scholar 

  • Lin, J. et al. Salt-assisted recovery of sodium metal anodes for high-rate capability sodium batteries. Adv. Mater. 36, 2409976 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y., Wu, Y., Liu, H., Chen, S. L. & Bo, S. H. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 13, 35750–35758 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gervillié-Mouravieff, C., Ah, L., Liu, A., Huang, C.-J. & Meng, Y. S. Deciphering the impact of the active lithium reservoir in anode-free pouch cells. ACS Energy Lett. 9, 1693–1700 (2024).

    Article 

    Google Scholar 

  • Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gunnarsdottir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geise, N. R., Kasse, R. M., Nelson Weker, J., Steinrück, H.-G. & Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, M. et al. Quantifying the evolution of inactive Li/lithium hydride and their correlations in rechargeable anode-free Li batteries. Nano Lett. 22, 6775–6781 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, M.-Y. et al. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 6, 2122–2137 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xu, H., Han, C., Li, W., Li, H. & Qiu, X. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 529, 231219 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. et al. Titration mass spectroscopy (TMS): a quantitative analytical technology for rechargeable batteries. Nano Lett. 22, 9972–9981 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2023).

    Article 

    Google Scholar 

  • Tao, M. et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries. ACS Nano 17, 24104–24114 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. G., Xu, W., Xiao, J., Cao, X. & Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).

    Article 
    CAS 

    Google Scholar 

  • Dachraoui, W., Kühnel, R.-S., Battaglia, C. & Erni, R. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy 130, 110086 (2024).

    Article 
    CAS 

    Google Scholar 

  • Chen, H. et al. Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S. et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5, 1263–1276 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S.-J. et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure. Energy Storage Mater. 40, 337–346 (2021).

    Article 

    Google Scholar 

  • Lee, D. et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. USA 117, 27195–27203 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, J. et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun. 15, 1354 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W. et al. Engineering wavy‐nanostructured anode interphases with fast ion transfer kinetics: toward practical Li‐metal full batteries. Adv. Funct. Mater. 30, 2003800 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. A. et al. Compositionally sequenced interfacial layers for high-energy Li-metal batteries. Adv. Sci. 11, 2310094 (2024).

    Article 
    CAS 

    Google Scholar 

  • Li, C. et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Lett. 23, 4014–4022 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, P. et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144, 212–218 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X., Shang, M. & Niu, J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20, 2639–2646 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).

    Article 

    Google Scholar 

  • Zhang, J. et al. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 8, 1752–1761 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. K. et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306889 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shi, X. et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl. Mater. Interfaces 13, 57107–57117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bae, J. et al. Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, H. et al. Electrode edge effects and the failure mechanism of lithium-metal batteries. ChemSusChem 11, 3821–3828 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, L. et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 32, 2003920 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31, 2002578 (2020).

    Article 

    Google Scholar 

  • Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).

    Article 
    CAS 

    Google Scholar 

  • Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, 2007945 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. Dynamic concentration of alloying element on anode surface enabling cycle‐stable Li metal batteries. Adv. Funct. Mater. 33, 2307281 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhang, B. et al. A dielectric MXene‐induced self‐built electric field in polymer electrolyte triggering fast lithium‐ion transport and high‐voltage cycling stability. Angew. Chem. Int. Ed. 63, e202403949 (2024).

    Article 
    CAS 

    Google Scholar 

  • Tan, Y. H. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yan, C. et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chang, Z., Yang, H., Pan, A., He, P. & Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 13, 6788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61, e202210522 (2022).

    Article 
    CAS 

    Google Scholar 

  • Qin, Y. et al. Binding FSI to construct a self-healing sei film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. Y. et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 33, 2006702 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yue, X. Y. et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode. Adv. Funct. Mater. 31, 2008786 (2020).

    Article 

    Google Scholar 

  • Chen, C., Zhang, J., Hu, B., Liang, Q. & Xiong, X. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 14, 4018 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Construction of organic‐rich solid electrolyte interphase for long‐cycling lithium–sulfur batteries. Adv. Funct. Mater. 34, 2304541 (2023).

    Article 

    Google Scholar 

  • Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).

    Article 
    CAS 

    Google Scholar 

  • Rahman, M. M., Ronne, A., Wang, N., Du, Y. & Hu, E. Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9, 2024–2030 (2024).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z., Chen, M., Zhou, D. & Xiao, Z. Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33, 2306321 (2023).

    Article 
    CAS 

    Google Scholar 

  • Adhitama, E. et al. Assessing key issues contributing to the degradation of NCM‐622||Cu cells: competition between transition metal dissolution and “dead Li” formation. Adv. Energy Mater. 14, 2303468 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wu, X. et al. Structural evolution upon delithiation/lithiation in prelithiated foil anodes: a case study of agli alloys with high Li utilization and marginal volume variation. Adv. Energy Mater. 11, 2003082 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, J. et al. Unique tridentate coordination tailored solvation sheath toward highly stable lithium metal batteries. Adv. Mater. 35, 2303347 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yao, S. et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33, 2212466 (2023).

    Article 
    CAS 

    Google Scholar 

  • Di, S. et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl Acad. Sci. USA 120, e2302375120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, P., Zhang, H., Lu, J. & Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202216312 (2023).

    Article 
    CAS 

    Google Scholar 

  • Guo, C. et al. Inorganic filler enhanced formation of stable inorganic‐rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y., Zhang, X., Ding, Y., Zhang, L. & Yu, G. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries. Adv. Mater. 32, 2005763 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, K. et al. Self‐regulation seaweed‐like lithium metal anode enables stable cycle life of lithium battery. Adv. Funct. Mater. 31, 2009917 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, K. et al. Lithiophilic CuO nanoflowers on Ti‐mesh inducing lithium lateral plating enabling stable lithium‐metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy Mater. 9, 1900853 (2019).

    Article 

    Google Scholar 

  • Hou, G. et al. Stable lithium metal anode enabled by an artificial multi-phase composite protective film. J. Power Sources 448, 227547 (2020).

    Article 
    CAS 

    Google Scholar 

  • Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qian, J. et al. Anode‐free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–71023 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tang, K., Tian, L., Zhang, Y. & Xu, Z. J. Anode-free lithium metal batteries: a promising flexible energy storage system. J. Mater. Chem. A 12, 16268–16292 (2024).

    Article 
    CAS 

    Google Scholar 

  • Lim, H.-S., Nguyen, D. T., Lochala, J. A., Cao, X. & Zhang, J.-G. Improving cycling performance of anode-free lithium batteries by pressure and voltage control. ACS Energy Lett. 9, 126–135 (2023).

    Article 

    Google Scholar 

  • Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–16766 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ding, J. F. et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61, e202115602 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Capturing the swelling of solid–electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hobold, G. M., Khurram, A. & Gallant, B. M. Operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xiang, Y. et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14, 177 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P. et al. Revealing lithium battery gas generation for safer practical applications. Adv. Funct. Mater. 32, 2208586 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y.-Y., Zhang, X.-Q., Zhou, M.-Y. & Huang, J.-Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023).

    Article 

    Google Scholar 

  • Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article 
    CAS 

    Google Scholar 

  • Leung, K., Merrill, L. C. & Harrison, K. L. Galvanic corrosion and electric field in lithium anode passivation films: effects on self-discharge. J. Phys. Chem. C 126, 8565–8580 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kolesnikov, A. et al. Galvanic corrosion of lithium‐powder‐based electrodes. Adv. Energy Mater. 10, 2000017 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shi, P. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 8, eabq3445 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, C. et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 14, 8269 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng, O. et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett. 22, 8346–8354 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. K., Pan, R., Rehnlund, D., Wang, Z. & Nyholm, L. First‐cycle oxidative generation of lithium nucleation sites stabilizes lithium‐metal electrodes. Adv. Energy Mater. 11, 2003674 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, D. et al. Synchronous healing of Li metal anode via asymmetrical bidirectional current. iScience 23, 100781 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ding, J. F. et al. Dynamic galvanic corrosion of working lithium metal anode under practical conditions. Adv. Energy Mater. 13, 2204305 (2023).

    Article 
    CAS 

    Google Scholar 

  • He, X., Zhang, K., Zhu, Z., Tong, Z. & Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 53, 9–24 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, C. et al. Armed lithium metal anodes with functional skeletons. Mater. Today Nano 13, 100103 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. D. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

    Article 

    Google Scholar 

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Refining grains and optimizing grain boundaries by Al2Yb to enable a dendrite-free lithium anode. Energy Environ. Sci. 17, 5901–5910 (2024).

    Article 
    CAS 

    Google Scholar 

  • Gu, X., Dong, J. & Lai, C. Li‐containing alloys beneficial for stabilizing lithium anode: a review. Eng. Rep. 3, e12339 (2020).

    Article 

    Google Scholar 

  • Ye, Y. et al. Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc. 145, 24775–24784 (2023).

    CAS 

    Google Scholar 

  • Fu, L. et al. A lithium metal anode surviving battery cycling above 200 oC. Adv. Mater. 32, 2000952 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tan, J. et al. Scalable customization of crystallographic plane controllable lithium metal anodes for ultralong-lasting lithium metal batteries. Adv. Mater. 36, 2403570 (2024).

    Article 
    CAS 

    Google Scholar 

  • Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lu, B. et al. Suppressing chemical corrosions of lithium metal anodes. Adv. Energy Mater. 12, 2202012 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shen, K., Xu, X. & Tang, Y. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 92, 106703 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ma, L., Li, N., Zhou, S., Zhang, X. & Xie, K. Lithium battery‐powered extreme environments exploring: principle, progress, and perspective. Adv. Energy Mater. 14, 2401157 (2024).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, Q. et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 31, 1903248 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, S. H., Hwang, J. Y., Park, S. J., Park, G. T. & Sun, Y. K. Adiponitrile (C6H8N2): a new Bi‐functional additive for high‐performance Li‐metal batteries. Adv. Funct. Mater. 29, 1902496 (2019).

    Article 

    Google Scholar 

  • Li, G.-X. et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9, 817–827 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wan, M. et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Li–Ca alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries. Research 2022, 9843093 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Q. et al. General fabrication of robust alloyed metal anodes for high-performance metal batteries. Adv. Mater. 36, 2404689 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ma, C. et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Adv. Energy Mater. 14, 2400202 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H., Ju, S., Xia, G. & Yu, X. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 8, eabl8245 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–7771 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ye, H. et al. Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, S. et al. 3D self-supporting core-shell silicon–carbon nanofibers-based host enables confined Li+ deposition for lithium metal battery. Nano Energy 131, 110255 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y., Yao, M., Wang, T., Wu, H. & Zhang, Y. A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angew. Chem. Int. Ed. 63, e202403399 (2024).

    Article 
    CAS 

    Google Scholar 

  • Bae, M. et al. Synergistic regulation of intrinsic lithiophilicity and mass transport kinetics of non‐lithium‐alloying nucleation sites for stable operation of low N/P ratio lithium metal batteries. Adv. Energy Mater. 14, 2304101 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jiang, G. et al. Robust artificial solid–electrolyte interfaces with biomimetic ionic channels for dendrite‐free Li metal anodes. Adv. Energy Mater. 11, 2003496 (2020).

    Article 

    Google Scholar 

  • Lu, G. et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16, 9883–9893 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, X. et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article 
    CAS 

    Google Scholar 

  • Luo, D. et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y. et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, H. et al. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat. Commun. 11, 643 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, C. et al. Non‐flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra‐stable cycling and fire‐safety lithium metal batteries. Adv. Funct. Mater. 33, 2212605 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ma, B. et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 16, 1427–1435 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Q. et al. Li2ZrF6-based electrolytes for durable lithium metal batteries. Nature 637, 339–346 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Active lithium replenishment to extend the life of a cell employing carbon and iron phosphate electrodes. J. Power Sources 196, 5966–5969 (2011).

    Article 
    CAS 

    Google Scholar 

  • Waldmann, T. & Wohlfahrt-Mehrens, M. Effects of rest time after Li plating on safety behavior — ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim. Acta 230, 454–460 (2017).

    Article 
    CAS 

    Google Scholar 

  • Atkinson, R. W., Carter, R. & Love, C. T. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 22, 18–28 (2019).

    Article 

    Google Scholar 

  • Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).

    Article 
    CAS 

    Google Scholar 

  • Made, R. I. et al. Health diagnosis and recuperation of aged Li-ion batteries with data analytics and equivalent circuit modeling. iScience 27, 109416 (2024).

    Article 

    Google Scholar 

  • Kang, S., Lee, S., Lee, H. & Kang, Y. M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spingler, F. B., Naumann, M. & Jossen, A. Capacity recovery effect in commercial LiFePO4/graphite cells. J. Electrochem. Soc. 167, 040526 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhao, X., Chen, H., Wu, H., Zhao, Y. & Luo, J. Nondisassembly repair of degraded LiFePO4 cells via lithium restoration from the solid electrolyte interphase. ACS Nano 18, 21125–21134 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).

    Article 
    CAS 

    Google Scholar 

  • Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, L. et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62, e202301073 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wen, Z. et al. High‐concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate‐based electrolyte. Adv. Funct. Mater. 32, 2204768 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168, 120535 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Reactivating the dead lithium by redox shuttle to promote the efficient utilization of lithium for anode free lithium metal batteries. Adv. Funct. Mater. 33, 2301332 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. et al. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jin, C. B. et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z., Dong, X., Wen, J., Hu, P. & Shang, C. The inducement and “rejuvenation” of Li dendrites by space confinement and positive Fe/Co-sites. Small 19, 2300106 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gao, L. T., Huang, P. & Guo, Z. S. Elucidating the role of rational separator microstructures in guiding dendrite growth and reviving dead Li. ACS Appl. Mater. Interfaces 14, 41957–41968 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, C. et al. Chemically induced activity recovery of isolated lithium in anode-free lithium metal batteries. Nano Lett. 22, 9268–9274 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).

    Article 
    CAS 

    Google Scholar 

  • Huang, S. et al. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16, 438–445 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. Zn‐rejuvenated and SEI‐regulated additive in zinc metal battery via the iodine post‐functionalized zeolitic imidazolate framework‐90. Adv. Energy Mater. 13, 2300627 (2023).

    Article 
    CAS 

    Google Scholar 

  • Weret, M. A. et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium–sulfur batteries. ACS Energy Lett. 8, 2817–2823 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, Q., Guo, W., Wang, D. & Fu, Y. A self-healing Li–S redox flow battery with alternative reaction pathways. J. Mater. Chem. A 9, 12652–12658 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qi, X. et al. Electrochemical reactivation of dead Li2S for Li–S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024).

    Article 

    Google Scholar 

  • Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. Capacity recovery by transient voltage pulse in silicon anode batteries. Science 386, 322–327 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, Y., Li, H., Liu, J. & Zhao, D. Understanding the chemistry of mesostructured porous nanoreactors. Nat. Rev. Chem. 8, 915–931 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, B. et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte. Adv. Mater. 34, 2108252 (2022).

    Article 
    CAS 

    Google Scholar 

  • Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhan, Y. X. et al. Regulating the two‐stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32, 2206834 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cheng, X. et al. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew. Chem. Int. Ed. 58, 5936–5940 (2019).

    Article 
    CAS 

    Google Scholar 

  • Aryanfar, A., Brooks, D. J., Colussi, A. J. & Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dutoit, C. E. et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12, 1410 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng, F. et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 33, 8223–8234 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 7770–7776 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, C. et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *