Inhibiting and rejuvenating dead lithium in battery materials

Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).
Google Scholar
Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).
Google Scholar
Li, Q. et al. Recent advances and opportunities in reactivating inactive lithium in batteries. Angew. Chem. Int. Ed. 63, e202404554 (2024).
Google Scholar
Tao, M. et al. Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries. J. Energy Chem. 96, 226–248 (2024).
Google Scholar
Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).
Google Scholar
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
Google Scholar
Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
Google Scholar
Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).
Google Scholar
Zhang, R. et al. Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022).
Google Scholar
Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).
Google Scholar
Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).
Google Scholar
Palacin, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018).
Google Scholar
Palanisamy, M., Parekh, M. H. & Pol, V. G. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life. Adv. Funct. Mater. 30, 2003668 (2020).
Google Scholar
Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).
Google Scholar
Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).
Google Scholar
McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).
Google Scholar
Qian, X. et al. Revitalizing dead zinc with ferrocene/ferrocenium redox chemistry for deep-cycle zinc metal batteries. Angew. Chem. Int. Ed. 64, e202412989 (2025).
Google Scholar
Lin, J. et al. Salt-assisted recovery of sodium metal anodes for high-rate capability sodium batteries. Adv. Mater. 36, 2409976 (2024).
Google Scholar
Zhao, Y., Wu, Y., Liu, H., Chen, S. L. & Bo, S. H. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 13, 35750–35758 (2021).
Google Scholar
Gervillié-Mouravieff, C., Ah, L., Liu, A., Huang, C.-J. & Meng, Y. S. Deciphering the impact of the active lithium reservoir in anode-free pouch cells. ACS Energy Lett. 9, 1693–1700 (2024).
Google Scholar
Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).
Google Scholar
Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).
Google Scholar
Gunnarsdottir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).
Google Scholar
Geise, N. R., Kasse, R. M., Nelson Weker, J., Steinrück, H.-G. & Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).
Google Scholar
Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).
Google Scholar
Tao, M. et al. Quantifying the evolution of inactive Li/lithium hydride and their correlations in rechargeable anode-free Li batteries. Nano Lett. 22, 6775–6781 (2022).
Google Scholar
Zhou, M.-Y. et al. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 6, 2122–2137 (2022).
Google Scholar
Xu, H., Han, C., Li, W., Li, H. & Qiu, X. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 529, 231219 (2022).
Google Scholar
Zhang, H. et al. Titration mass spectroscopy (TMS): a quantitative analytical technology for rechargeable batteries. Nano Lett. 22, 9972–9981 (2022).
Google Scholar
Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2023).
Google Scholar
Tao, M. et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries. ACS Nano 17, 24104–24114 (2023).
Google Scholar
Zhang, J. G., Xu, W., Xiao, J., Cao, X. & Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020).
Google Scholar
Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).
Google Scholar
Dachraoui, W., Kühnel, R.-S., Battaglia, C. & Erni, R. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy 130, 110086 (2024).
Google Scholar
Chen, H. et al. Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).
Google Scholar
Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).
Google Scholar
Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).
Google Scholar
Zhang, S. et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5, 1263–1276 (2022).
Google Scholar
Zhang, S.-J. et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure. Energy Storage Mater. 40, 337–346 (2021).
Google Scholar
Lee, D. et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).
Google Scholar
Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. USA 117, 27195–27203 (2020).
Google Scholar
Cao, J. et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun. 15, 1354 (2024).
Google Scholar
Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).
Google Scholar
Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).
Google Scholar
Zhang, W. et al. Engineering wavy‐nanostructured anode interphases with fast ion transfer kinetics: toward practical Li‐metal full batteries. Adv. Funct. Mater. 30, 2003800 (2020).
Google Scholar
Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).
Google Scholar
Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).
Google Scholar
Lee, J. A. et al. Compositionally sequenced interfacial layers for high-energy Li-metal batteries. Adv. Sci. 11, 2310094 (2024).
Google Scholar
Li, C. et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Lett. 23, 4014–4022 (2023).
Google Scholar
Shi, P. et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144, 212–218 (2022).
Google Scholar
Chen, X., Shang, M. & Niu, J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20, 2639–2646 (2020).
Google Scholar
Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).
Google Scholar
Zhang, J. et al. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 8, 1752–1761 (2023).
Google Scholar
Zhang, Q. K. et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306889 (2023).
Google Scholar
Shi, X. et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl. Mater. Interfaces 13, 57107–57117 (2021).
Google Scholar
Bae, J. et al. Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019).
Google Scholar
Lee, H. et al. Electrode edge effects and the failure mechanism of lithium-metal batteries. ChemSusChem 11, 3821–3828 (2018).
Google Scholar
Yu, L. et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018).
Google Scholar
Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).
Google Scholar
Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 32, 2003920 (2020).
Google Scholar
Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).
Google Scholar
Wang, H. et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31, 2002578 (2020).
Google Scholar
Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).
Google Scholar
Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).
Google Scholar
Wang, X. et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, 2007945 (2021).
Google Scholar
Wang, X. et al. Dynamic concentration of alloying element on anode surface enabling cycle‐stable Li metal batteries. Adv. Funct. Mater. 33, 2307281 (2023).
Google Scholar
Zhang, B. et al. A dielectric MXene‐induced self‐built electric field in polymer electrolyte triggering fast lithium‐ion transport and high‐voltage cycling stability. Angew. Chem. Int. Ed. 63, e202403949 (2024).
Google Scholar
Tan, Y. H. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).
Google Scholar
Yan, C. et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).
Google Scholar
Chang, Z., Yang, H., Pan, A., He, P. & Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 13, 6788 (2022).
Google Scholar
Liu, S. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61, e202210522 (2022).
Google Scholar
Qin, Y. et al. Binding FSI– to construct a self-healing sei film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024).
Google Scholar
Wang, Z. Y. et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 33, 2006702 (2021).
Google Scholar
Yue, X. Y. et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode. Adv. Funct. Mater. 31, 2008786 (2020).
Google Scholar
Chen, C., Zhang, J., Hu, B., Liang, Q. & Xiong, X. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 14, 4018 (2023).
Google Scholar
Li, Z. et al. Construction of organic‐rich solid electrolyte interphase for long‐cycling lithium–sulfur batteries. Adv. Funct. Mater. 34, 2304541 (2023).
Google Scholar
Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg–1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).
Google Scholar
Rahman, M. M., Ronne, A., Wang, N., Du, Y. & Hu, E. Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9, 2024–2030 (2024).
Google Scholar
Liu, Z., Chen, M., Zhou, D. & Xiao, Z. Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33, 2306321 (2023).
Google Scholar
Adhitama, E. et al. Assessing key issues contributing to the degradation of NCM‐622||Cu cells: competition between transition metal dissolution and “dead Li” formation. Adv. Energy Mater. 14, 2303468 (2024).
Google Scholar
Wu, X. et al. Structural evolution upon delithiation/lithiation in prelithiated foil anodes: a case study of agli alloys with high Li utilization and marginal volume variation. Adv. Energy Mater. 11, 2003082 (2021).
Google Scholar
Wu, J. et al. Unique tridentate coordination tailored solvation sheath toward highly stable lithium metal batteries. Adv. Mater. 35, 2303347 (2023).
Google Scholar
Yao, S. et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33, 2212466 (2023).
Google Scholar
Di, S. et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl Acad. Sci. USA 120, e2302375120 (2023).
Google Scholar
Li, P., Zhang, H., Lu, J. & Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202216312 (2023).
Google Scholar
Guo, C. et al. Inorganic filler enhanced formation of stable inorganic‐rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023).
Google Scholar
Zhou, Y., Zhang, X., Ding, Y., Zhang, L. & Yu, G. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries. Adv. Mater. 32, 2005763 (2020).
Google Scholar
Wang, K. et al. Self‐regulation seaweed‐like lithium metal anode enables stable cycle life of lithium battery. Adv. Funct. Mater. 31, 2009917 (2021).
Google Scholar
Huang, K. et al. Lithiophilic CuO nanoflowers on Ti‐mesh inducing lithium lateral plating enabling stable lithium‐metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy Mater. 9, 1900853 (2019).
Google Scholar
Hou, G. et al. Stable lithium metal anode enabled by an artificial multi-phase composite protective film. J. Power Sources 448, 227547 (2020).
Google Scholar
Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).
Google Scholar
Qian, J. et al. Anode‐free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–71023 (2016).
Google Scholar
Tang, K., Tian, L., Zhang, Y. & Xu, Z. J. Anode-free lithium metal batteries: a promising flexible energy storage system. J. Mater. Chem. A 12, 16268–16292 (2024).
Google Scholar
Lim, H.-S., Nguyen, D. T., Lochala, J. A., Cao, X. & Zhang, J.-G. Improving cycling performance of anode-free lithium batteries by pressure and voltage control. ACS Energy Lett. 9, 126–135 (2023).
Google Scholar
Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).
Google Scholar
Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).
Google Scholar
Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–16766 (2019).
Google Scholar
Ding, J. F. et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61, e202115602 (2022).
Google Scholar
Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).
Google Scholar
Zhang, Z. et al. Capturing the swelling of solid–electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).
Google Scholar
Hobold, G. M., Khurram, A. & Gallant, B. M. Operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020).
Google Scholar
Xiang, Y. et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14, 177 (2023).
Google Scholar
Liu, P. et al. Revealing lithium battery gas generation for safer practical applications. Adv. Funct. Mater. 32, 2208586 (2022).
Google Scholar
He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).
Google Scholar
Wang, Y.-Y., Zhang, X.-Q., Zhou, M.-Y. & Huang, J.-Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023).
Google Scholar
Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).
Google Scholar
Leung, K., Merrill, L. C. & Harrison, K. L. Galvanic corrosion and electric field in lithium anode passivation films: effects on self-discharge. J. Phys. Chem. C 126, 8565–8580 (2022).
Google Scholar
Kolesnikov, A. et al. Galvanic corrosion of lithium‐powder‐based electrodes. Adv. Energy Mater. 10, 2000017 (2020).
Google Scholar
Shi, P. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 8, eabq3445 (2022).
Google Scholar
Jin, C. et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 14, 8269 (2023).
Google Scholar
Sheng, O. et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett. 22, 8346–8354 (2022).
Google Scholar
Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).
Google Scholar
Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).
Google Scholar
Huang, Y. K., Pan, R., Rehnlund, D., Wang, Z. & Nyholm, L. First‐cycle oxidative generation of lithium nucleation sites stabilizes lithium‐metal electrodes. Adv. Energy Mater. 11, 2003674 (2021).
Google Scholar
Wang, D. et al. Synchronous healing of Li metal anode via asymmetrical bidirectional current. iScience 23, 100781 (2020).
Google Scholar
Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).
Google Scholar
Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).
Google Scholar
Ding, J. F. et al. Dynamic galvanic corrosion of working lithium metal anode under practical conditions. Adv. Energy Mater. 13, 2204305 (2023).
Google Scholar
He, X., Zhang, K., Zhu, Z., Tong, Z. & Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 53, 9–24 (2024).
Google Scholar
Jin, C. et al. Armed lithium metal anodes with functional skeletons. Mater. Today Nano 13, 100103 (2021).
Google Scholar
Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).
Google Scholar
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).
Google Scholar
Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).
Google Scholar
Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. D. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).
Google Scholar
Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).
Google Scholar
Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).
Google Scholar
Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).
Google Scholar
Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).
Google Scholar
Deng, Y. et al. Refining grains and optimizing grain boundaries by Al2Yb to enable a dendrite-free lithium anode. Energy Environ. Sci. 17, 5901–5910 (2024).
Google Scholar
Gu, X., Dong, J. & Lai, C. Li‐containing alloys beneficial for stabilizing lithium anode: a review. Eng. Rep. 3, e12339 (2020).
Google Scholar
Ye, Y. et al. Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc. 145, 24775–24784 (2023).
Google Scholar
Fu, L. et al. A lithium metal anode surviving battery cycling above 200 oC. Adv. Mater. 32, 2000952 (2020).
Google Scholar
Tan, J. et al. Scalable customization of crystallographic plane controllable lithium metal anodes for ultralong-lasting lithium metal batteries. Adv. Mater. 36, 2403570 (2024).
Google Scholar
Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).
Google Scholar
Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).
Google Scholar
Lu, B. et al. Suppressing chemical corrosions of lithium metal anodes. Adv. Energy Mater. 12, 2202012 (2022).
Google Scholar
Shen, K., Xu, X. & Tang, Y. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 92, 106703 (2022).
Google Scholar
Ma, L., Li, N., Zhou, S., Zhang, X. & Xie, K. Lithium battery‐powered extreme environments exploring: principle, progress, and perspective. Adv. Energy Mater. 14, 2401157 (2024).
Google Scholar
Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).
Google Scholar
Wang, Q. et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 31, 1903248 (2019).
Google Scholar
Lee, S. H., Hwang, J. Y., Park, S. J., Park, G. T. & Sun, Y. K. Adiponitrile (C6H8N2): a new Bi‐functional additive for high‐performance Li‐metal batteries. Adv. Funct. Mater. 29, 1902496 (2019).
Google Scholar
Li, G.-X. et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9, 817–827 (2024).
Google Scholar
Wan, M. et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020).
Google Scholar
Wang, Z. et al. Li–Ca alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries. Research 2022, 9843093 (2022).
Google Scholar
Yin, Q. et al. General fabrication of robust alloyed metal anodes for high-performance metal batteries. Adv. Mater. 36, 2404689 (2024).
Google Scholar
Ma, C. et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Adv. Energy Mater. 14, 2400202 (2024).
Google Scholar
Zhang, H., Ju, S., Xia, G. & Yu, X. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 8, eabl8245 (2022).
Google Scholar
Li, G. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).
Google Scholar
Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–7771 (2018).
Google Scholar
Ye, H. et al. Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019).
Google Scholar
Wang, S. et al. 3D self-supporting core-shell silicon–carbon nanofibers-based host enables confined Li+ deposition for lithium metal battery. Nano Energy 131, 110255 (2024).
Google Scholar
Zhang, Y., Yao, M., Wang, T., Wu, H. & Zhang, Y. A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angew. Chem. Int. Ed. 63, e202403399 (2024).
Google Scholar
Bae, M. et al. Synergistic regulation of intrinsic lithiophilicity and mass transport kinetics of non‐lithium‐alloying nucleation sites for stable operation of low N/P ratio lithium metal batteries. Adv. Energy Mater. 14, 2304101 (2024).
Google Scholar
Jiang, G. et al. Robust artificial solid–electrolyte interfaces with biomimetic ionic channels for dendrite‐free Li metal anodes. Adv. Energy Mater. 11, 2003496 (2020).
Google Scholar
Lu, G. et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16, 9883–9893 (2022).
Google Scholar
Shen, X. et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).
Google Scholar
Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).
Google Scholar
Luo, D. et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021).
Google Scholar
Xie, Y. et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023).
Google Scholar
Dai, H. et al. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat. Commun. 11, 643 (2020).
Google Scholar
Liao, C. et al. Non‐flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra‐stable cycling and fire‐safety lithium metal batteries. Adv. Funct. Mater. 33, 2212605 (2023).
Google Scholar
Ma, B. et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 16, 1427–1435 (2024).
Google Scholar
Xu, Q. et al. Li2ZrF6-based electrolytes for durable lithium metal batteries. Nature 637, 339–346 (2025).
Google Scholar
Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).
Google Scholar
Wang, J. et al. Active lithium replenishment to extend the life of a cell employing carbon and iron phosphate electrodes. J. Power Sources 196, 5966–5969 (2011).
Google Scholar
Waldmann, T. & Wohlfahrt-Mehrens, M. Effects of rest time after Li plating on safety behavior — ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim. Acta 230, 454–460 (2017).
Google Scholar
Atkinson, R. W., Carter, R. & Love, C. T. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 22, 18–28 (2019).
Google Scholar
Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).
Google Scholar
Made, R. I. et al. Health diagnosis and recuperation of aged Li-ion batteries with data analytics and equivalent circuit modeling. iScience 27, 109416 (2024).
Google Scholar
Kang, S., Lee, S., Lee, H. & Kang, Y. M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).
Google Scholar
Spingler, F. B., Naumann, M. & Jossen, A. Capacity recovery effect in commercial LiFePO4/graphite cells. J. Electrochem. Soc. 167, 040526 (2020).
Google Scholar
Zhao, X., Chen, H., Wu, H., Zhao, Y. & Luo, J. Nondisassembly repair of degraded LiFePO4 cells via lithium restoration from the solid electrolyte interphase. ACS Nano 18, 21125–21134 (2024).
Google Scholar
Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).
Google Scholar
Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).
Google Scholar
Dong, L. et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62, e202301073 (2023).
Google Scholar
Wen, Z. et al. High‐concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate‐based electrolyte. Adv. Funct. Mater. 32, 2204768 (2022).
Google Scholar
Chen, J. et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168, 120535 (2021).
Google Scholar
Zhang, Y. et al. Reactivating the dead lithium by redox shuttle to promote the efficient utilization of lithium for anode free lithium metal batteries. Adv. Funct. Mater. 33, 2301332 (2023).
Google Scholar
Chen, J. et al. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022).
Google Scholar
Jin, C. B. et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021).
Google Scholar
Liu, Z., Dong, X., Wen, J., Hu, P. & Shang, C. The inducement and “rejuvenation” of Li dendrites by space confinement and positive Fe/Co-sites. Small 19, 2300106 (2023).
Google Scholar
Gao, L. T., Huang, P. & Guo, Z. S. Elucidating the role of rational separator microstructures in guiding dendrite growth and reviving dead Li. ACS Appl. Mater. Interfaces 14, 41957–41968 (2022).
Google Scholar
Ma, C. et al. Chemically induced activity recovery of isolated lithium in anode-free lithium metal batteries. Nano Lett. 22, 9268–9274 (2022).
Google Scholar
Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).
Google Scholar
Huang, S. et al. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16, 438–445 (2023).
Google Scholar
Zhao, Y. et al. Zn‐rejuvenated and SEI‐regulated additive in zinc metal battery via the iodine post‐functionalized zeolitic imidazolate framework‐90. Adv. Energy Mater. 13, 2300627 (2023).
Google Scholar
Weret, M. A. et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium–sulfur batteries. ACS Energy Lett. 8, 2817–2823 (2023).
Google Scholar
Chen, Q., Guo, W., Wang, D. & Fu, Y. A self-healing Li–S redox flow battery with alternative reaction pathways. J. Mater. Chem. A 9, 12652–12658 (2021).
Google Scholar
Qi, X. et al. Electrochemical reactivation of dead Li2S for Li–S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).
Google Scholar
Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024).
Google Scholar
Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).
Google Scholar
Yang, Y. et al. Capacity recovery by transient voltage pulse in silicon anode batteries. Science 386, 322–327 (2024).
Google Scholar
Ma, Y., Li, H., Liu, J. & Zhao, D. Understanding the chemistry of mesostructured porous nanoreactors. Nat. Rev. Chem. 8, 915–931 (2024).
Google Scholar
Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).
Google Scholar
Han, B. et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte. Adv. Mater. 34, 2108252 (2022).
Google Scholar
Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).
Google Scholar
Zhan, Y. X. et al. Regulating the two‐stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32, 2206834 (2022).
Google Scholar
Cheng, X. et al. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew. Chem. Int. Ed. 58, 5936–5940 (2019).
Google Scholar
Aryanfar, A., Brooks, D. J., Colussi, A. J. & Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014).
Google Scholar
Dutoit, C. E. et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12, 1410 (2021).
Google Scholar
Geng, F. et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 33, 8223–8234 (2021).
Google Scholar
Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 7770–7776 (2021).
Google Scholar
Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).
Google Scholar
Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).
Google Scholar
Yan, C. et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).
Google Scholar
link