Exploiting chemical bonding principles to design high-performance thermoelectric materials

0
Exploiting chemical bonding principles to design high-performance thermoelectric materials
  • Freer, R. & Powell, A. V. Realising the potential of thermoelectric technology: a roadmap. J. Mater. Chem. C 8, 441–463 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zaia, E. W., Gordon, M. P., Yuan, P. & Urban, J. J. Progress and perspective: soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 5, 1800823 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hasan, M. N., Nafea, M., Nayan, N. & Mohamed Ali, M. S. Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices. Adv. Mater. Technol. 7, 2101203 (2022).

    Article 

    Google Scholar 

  • Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, T., Dutta, M., Sarkar, D. & Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics. J. Am. Chem. Soc. 144, 10099–10118 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009).

    Article 
    CAS 

    Google Scholar 

  • Slack, G. A. in CRC Handbook of Thermoelectrics 1st edn (ed. Rowe, D. M.) 407–440 (CRC Press, 1995).

  • Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kanatzidis, M. G. Nanostructured thermoelectrics: the new paradigm? Chem. Mater. 22, 648–659 (2010).

    Article 
    CAS 

    Google Scholar 

  • Zhao, L. D. et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compnd. 455, 259–264 (2008).

    Article 
    CAS 

    Google Scholar 

  • Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993).

    Article 
    CAS 

    Google Scholar 

  • Vaney, J. B., Yamini, S. A., Takaki, H., Kobayashi, K. & Mori, T. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater. Today Phys. 9, 10090 (2019).

    Google Scholar 

  • Powell, A. V. & Vaqueiro, P. in Thermoelectric Materials and Devices (eds Nandhakumar, I. et al.) Ch. 2 (Royal Society of Chemistry, 2016).

  • Zhao, L. D. et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7, 2900–2924 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hébert, S. et al. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides. J. Phys. Condens. Matter 28, 013001 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rull-Bravo, M., Moure, A., Fernández, J. F. & Martín-González, M. Skutterudites as thermoelectric materials: revisited. RSC Adv. 5, 41653–41667 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bos, J. W. G. & Downie, R. A. Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Mattter 26, 433201 (2014).

    Article 

    Google Scholar 

  • Toberer, E. S., May, A. F. & Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleinke, H. New bulk materials for thermoelectric power generation: clathrates and complex antimonides. Chem. Mater. 22, 604–611 (2010).

    Article 
    CAS 

    Google Scholar 

  • Takabatake, T. in Thermoelectric Nanomaterials Materials Design and Applications (eds Koumoto, K. & Mori, T.) Ch. 2 (Springer, 2013).

  • Nozariasbmarz, A. et al. Thermoelectric silicides: a review. Jpn. J. Appl. Phys. 56, 05DA04 (2017).

    Article 

    Google Scholar 

  • Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, P. et al. Recent advances in inorganic material thermoelectrics. Inorg. Chem. Front. 5, 2380–2398 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hendricks, T., Caillat, T. & Mori, T. Keynote review of latest advances in thermoelectric generation materials, devices, and technologies 2022. Energies 15, 7307 (2022).

    Article 
    CAS 

    Google Scholar 

  • Powell, A. V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. J. Appl. Phys. 126, 100901 (2019).

    Article 

    Google Scholar 

  • Norman, C., Azough, F. & Freer, R. in Thermoelectric Materials and Devices (eds Nandhakumar, I. et al.) Ch. 3 (Royal Society of Chemistry, 2016).

  • Bos, J. W. in Inorganic Thermoelectric Materials: from Fundamental Concepts to Materials Design (ed. Powell, A. V.) Ch. 5 (Royal Society of Chemistry, 2021).

  • Freer, R. et al. Key properties of inorganic thermoelectric materials—tables (version 1). J. Phys. Energy 4, 022002 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, H., Wang, J., Cai, A. & Snyder, G. J. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J. Mater. Chem. A 2, 3169–3174 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zeier, W. G. et al. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4 xSx. J. Mater. Chem. A 2, 1790–1794 (2014).

    Article 
    CAS 

    Google Scholar 

  • Gascoin, F., Raghavendra, N., Guilmeau, E. & Bréard, Y. CdI2 structure type as potential thermoelectric materials: synthesis and high temperature thermoelectric properties of the solid solution TiSxSe2−x. J. Alloys Compd. 521, 121–125 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pavan Kumar, V. et al. The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu5FeS4 bornite. Dalton Trans. 46, 2174–2183 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ul Islam, A. K. M. F., Helal, M. A., Liton, M. N. H., Kamruzzaman, M. & Islam, M. T. H. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (Ch = S, Se, Te). Indian J. Phys. 91, 403–412 (2017).

    Article 
    CAS 

    Google Scholar 

  • Albanesi, E. A., Okoye, C. M. I., Rodriguez, C. O., Pelzer, Y., Blanca, E. L. & Petukhov, A. G. Electronic structure, structural properties, and dielectric functions of IV-VI semiconductors: PbSe and PbTe. Phys. Rev. B 61, 16589–16595 (2000).

    Article 
    CAS 

    Google Scholar 

  • Wang, H., Pei, Y., LaLonde, A. D. & Snyder, G. J. in Thermoelectric Nanomaterials Materials Design and Applications (eds Koumoto, K. & Mori, T.) Ch. 2 (Springer, 2013).

  • Pei, Y., LaLonde, A., Wang, H. & Snyder, G. J. Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5, 7963–7969 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L. D. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liu, W. et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Yin, K. et al. Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1−xyGexSny ternary solid solution. Chem. Mater. 28, 5538–5548 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tang, Y. et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14, 1223–1228 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanus, R. et al. A chemical understanding of the band convergence in thermoelectric CoSb3 skutterudites: influence of electron population, local thermal expansion, and bonding interactions. Chem. Mater. 29, 1156–1164 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zeier, W. G. et al. Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4. J. Mater. Chem. C 2, 10189–10194 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J. et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 26, 3848–3853 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ioffe, A. V. Dependence of the thermal conductivity of the crystal lattice on the degree of ionicity of compounds. Sov. Phys. Solid State 5, 2446 (1963).

    Google Scholar 

  • Spitzer, D. P. Lattice thermal conductivity of semiconductors: a chemical bond approach. J. Phys. Chem. Solids 31, 19–40 (1970).

    Article 
    CAS 

    Google Scholar 

  • Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed. 55, 6826–6841 (2016).

    Article 
    CAS 

    Google Scholar 

  • Morelli, D. T. & Slack, G. A. in High Thermal Conductivity Materials. (eds Shindé, S. L. & Goela, J. S.) Ch. 2 (Springer, 2006).

  • Morelli, D. T., Jovovic, V. & Heremans, J. P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai, W., Wang, Y., Morelli, D. T. & Lu, X. From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely. Adv. Funct. Mater. 25, 3648–3657 (2015).

    Article 
    CAS 

    Google Scholar 

  • Vaqueiro, P. et al. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Phys. Chem. Chem. Phys. 17, 31735–31740 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, B., Zhang, R., Chen, K., Mahajan, A. & Reece, M. J. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. J. Mater. Chem. A 5, 3249–3259 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).

    Article 
    CAS 

    Google Scholar 

  • Skoug, E. & Morelli, D. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys. Rev. Lett. 107, 235901 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors. Phys. Rev. B 85, 054306 (2012).

    Article 

    Google Scholar 

  • Tippireddy, S. et al. Local structural distortions and reduced thermal conductivity in Ge-substituted chalcopyrite. J. Mater. Chem. A 10, 23874–23885 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. (2007).

  • Peng, W., Chanakian, S. & Zevalkink, A. Crystal chemistry and thermoelectric transport of AM2X2 compounds. Inorg. Chem. Front. 5, 1744 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wood, M., Kuo, J. J., Imasato, K. & Snyder, G. J. Improvement of low-temperature zT in a Mg3Sb2–Mg3Bi2 solid solution via Mg-vapor annealing. Adv. Mater. 31, 1902337 (2019).

    Article 

    Google Scholar 

  • Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy 52, 246–255 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sun, J. & Singh, D. J. Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds. J. Mater. Chem. A 5, 8499–8509 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, X.-J. et al. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2. Appl. Phys. Lett. 94, 092106 (2009).

    Article 

    Google Scholar 

  • Zhang, J., Song, L., Sist, M., Tolborg, K. & Iversen, B. B. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nat. Commun. 9, 4716 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J., Song, L. & Iversen, B. B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. npj Comput. Mater. 5, 76 (2019).

    Article 

    Google Scholar 

  • Peng, W., Petretto, G., Rignanese, G.-M., Hautier, G. & Zevalkink, A. An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure. Joule 2, 1879–1893 (2018).

    Article 
    CAS 

    Google Scholar 

  • Howells, W. S., Barnes, A. C. & Hamilton, M. Quasielastic neutron scattering and the dynamics of Mg2+ in the fast ion and liquid phases of Mg3Bi2. Phys. B 266, 97–99 (1999).

    Article 
    CAS 

    Google Scholar 

  • Koumpouras, K. & Larsson, J. A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter 32, 315502 (2020).

    Article 
    CAS 

    Google Scholar 

  • Esser, S. The quantum theory of atoms in molecules and the interactive conception of chemical bonding. Philos. Sci. 86, 1307–1317 (2019).

    Article 

    Google Scholar 

  • Grin, Y. Inhomogeneity and anisotropy of chemical bonding and thermoelectric properties of materials. J. Solid State Chem. 274, 329–336 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tolborg, K. & Iversen, B. B. Chemical bonding origin of the thermoelectric power factor in Half-Heusler semiconductors. Chem. Mater. 33, 5308–5316 (2021).

    Article 
    CAS 

    Google Scholar 

  • Beekman, M., Morelli, D. T. & Nolas, G. S. Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182–1185 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, K., Qiu, P., Shi, X. & Chen, L. Recent advances in liquid-like thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rogl, G. & Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).

    Article 

    Google Scholar 

  • Brorsson, J., Zhang, Y., Palmqvist, A. E. C. & Erhart, P. Order–disorder transition in inorganic clathrates controls electrical transport properties. Chem. Mater. 33, 4500–4509 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pailhès, S. et al. From phonons to the thermal properties of complex thermoelectric crystals: the case of type-I clathrates. Results Phys. 49, 106487 (2023).

    Article 

    Google Scholar 

  • Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lara-Curzio, E. et al. Low-temperature heat capacity and localized vibrational modes in natural and synthetic tetrahedrites. J. Appl. Phys. 115, 193515 (2014).

    Article 

    Google Scholar 

  • Toberer, E. S., Zevalkink, A. & Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).

    Article 
    CAS 

    Google Scholar 

  • Prado-Gonjal, J., Vaqueiro, P., Kowalczyk, R. M., Smith, R. I. & Powell, A. V. Lithium-filled skutterudites by intercalation at ambient-temperature. Z. Anorg. Allg. Chem. 649, e202300087 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gainza, J. et al. Unveiling the correlation between the crystalline structure of M-filled CoSb3 (M = Y, K, Sr) skutterudites and their thermoelectric transport properties. Adv. Funct. Mater. 30, 2001651 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koza, M. M. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805–810 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bridges, F. et al. Complex vibrations in arsenide skutterudites and oxyskutterudites. Phys. Rev. B 91, 014109 (2015).

    Article 

    Google Scholar 

  • Shi, X. et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, J., Zhang, W., Bai, S. Q., Mei, Z. & Chen, L. D. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).

    Article 

    Google Scholar 

  • Wille, H.-C. et al. Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering. Phys. Rev. B 76, 140301 (2007).

    Article 

    Google Scholar 

  • Dimitrov, I. K. et al. Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12. Phys. Rev. B 82, 174301 (2010).

    Article 

    Google Scholar 

  • Feldman, J. L., Singh, D. J., Mazin, I. I., Mandrus, D. & Sales, B. C. Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev. B 61, R9209 (2000).

    Article 
    CAS 

    Google Scholar 

  • Rogl, G. & Rogl, P. F. Filled Sb-Based Skutterudites from 1996–2022. Crystals 12, 1843 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rogl, G. et al. Multifilled nanocrystalline p-type didymium – skutterudites with ZT>1.2. Intermetallics 18, 2435–2444 (2010).

    Article 
    CAS 

    Google Scholar 

  • Rogl, G. et al. Influence of shear strain on HPT-processed n-type skutterudites yielding ZT = 2.1. J. Alloys Compd. 855, 157409 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rogl, G., Zehetbauer, M. J. & Rogl, P. F. The effect of severe plastic deformation on thermoelectric performance of skutterudites, Half-Heuslers and Bi-Tellurides. Mater. Trans. 60, 2071–2085 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fleurial, J.-P., Borshchevsky, A., Caillat, T., Morelli, D. T. & Meisner, G. P. High figure of merit in Ce-filled skutterudites. In Fifteenth International Conference on Thermoelectrics. Proc. ICT ‘96 91–95 (IEEE, 1996).

  • Meng, X. et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Mater. 98, 405–415 (2015).

    Article 
    CAS 

    Google Scholar 

  • Dolyniuk, J.-A., Owens-Baird, B., Wang, J., Zaikina, J. V. & Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 108, 1–46 (2016).

    Article 

    Google Scholar 

  • Nolas, G. S. (ed.) The Physics and Chemistry of Inorganic Clathrates (Springer, 2014).

  • Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014).

    Article 
    CAS 

    Google Scholar 

  • Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R Rep. 138, 100501 (2019).

    Article 

    Google Scholar 

  • Roy, S. et al. Occupational disorder as the origin of flattening of the acoustic phonon branches in the clathrate Ba8Ga16Ge30. Phys. Rev. B 107, L020301 (2023).

    Article 
    CAS 

    Google Scholar 

  • Blake, N. P., Latturner, S., Bryan, J. D., Stucky, G. D. & Metiu, H. Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga17Si30 and Ba8In16Sn30. J. Chem. Phys. 115, 8060–8073 (2001).

    Article 
    CAS 

    Google Scholar 

  • Saramat, A. et al. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J. Appl. Phys. 99, 023708 (2006).

    Article 

    Google Scholar 

  • Deng, S. K., Saiga, Y., Suekuni, K. & Takabatake, T. Effect of Al substitution on the thermoelectric properties of the type VIII clathrate Ba8Ga16Sn30. J. Electron. Mater. 40, 1124–1128 (2011).

    Article 
    CAS 

    Google Scholar 

  • Saiga, Y., Du, B., Deng, S. K., Kajisa, K. & Takabatake, T. Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. J. Alloys Compd. 537, 303–307 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jana, M. K., Pal, K., Waghmare, U. V. & Biswas, K. The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling. Angew. Chem. Int. Ed. 55, 7792–7796 (2016).

    Article 
    CAS 

    Google Scholar 

  • Luu, S. D. N. et al. Origin of low thermal conductivity in In4Se3. ACS Appl. Energy Mater. 3, 12549–12556 (2020).

    Article 
    CAS 

    Google Scholar 

  • Voneshen, D. J. et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat. Mater. 12, 1028–1032 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lemoine, P., Guèlou, G., Raveau, B. & Guilmeau, E. Crystal structure classification of copper-based sulfides as a tool for the design of inorganic functional materials. Angew. Chem. Int. Ed. 61, e202108686 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, J. et al. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles. Adv. Funct. Mater. 32, 2108532 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jaffe, J. E. & Zunger, A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882–1906 (1984).

    Article 
    CAS 

    Google Scholar 

  • Voneshen, D. J., Walker, H. C., Re.fson, K. & Goff, J. P. Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide. Phys. Rev. Lett. 118, 145901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niedziela, J. L. et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. Nat. Phys. 15, 73–78 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ren, Q. et al. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat. Mater. 22, 999–1006 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Y., Zhang, T., Shi, X., Wei, S.-H. & Chen, L. High thermoelectric performance in copper telluride. NPG Asia Mater. 7, e210 (2015).

    Article 
    CAS 

    Google Scholar 

  • He, Y. et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, T.-R., Qiu, P., Zhao, K., Shi, X. & Chen, L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv. Mater. 35, 2110236 (2023).

    Article 
    CAS 

    Google Scholar 

  • Roychowdhury, S. et al. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angew. Chem. Int. Ed. 57, 4043–4047 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lin, S., Li, W. & Pei, Y. Thermally insulative thermoelectric argyrodites. Mater. Today 48, 198–213 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lin, S. et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 1, 816–830 (2017).

    Article 
    CAS 

    Google Scholar 

  • Vaqueiro, P. et al. The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites. Chem. Mater. 29, 4080–4090 (2017).

    Article 
    CAS 

    Google Scholar 

  • Xie, H. et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc. 145, 3211–3220 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rana, K. S. & Soni, A. Thermoelectricity in Ag/Cu-based complex crystal structure minerals with inherent low thermal conductivity. Oxf. Open Mater. Sci. 3, itad005 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhao, T., Wang, Y.-A., Zhao, Z.-Y., Liu, Q. & Liu, Q.-J. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations. Mater. Res. Express 5, 016305 (2018).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Cu2Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhao, K. et al. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater. Today Phys. 1, 14–23 (2017).

    Article 

    Google Scholar 

  • Yang, D. et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. J. Mater. Chem. A 5, 23243–23251 (2017).

    Article 
    CAS 

    Google Scholar 

  • Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3, 458–463 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, J. et al. Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance. J. Am. Chem. Soc. 136, 1497–1504 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nylén, J., Andersson, M., Lidin, S. & Häussermann, U. The structure of α-Zn4Sb3: ordering of the phonon-glass thermoelectric material β-Zn4Sb3. J. Am. Chem. Soc. 126, 16306–16307 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, H. et al. High thermoelectric performance of MgAgSb-based materials. Nano Energy 7, 97–103 (2014).

    Article 
    CAS 

    Google Scholar 

  • Li, D. et al. Atomic disorders induced by silver and magnesium ion migrations favor high thermoelectric performance in α-MgAgSb-based materials. Adv. Funct. Mater. 25, 6478–6488 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mukherjee, S. et al. Beyond rattling: tetrahedrites as incipient ionic conductors. Adv. Mater. 35, 2306088 (2023).

    Article 
    CAS 

    Google Scholar 

  • Samanta, M., Ghosh, T., Chandra, S. & Biswas, K. Layered materials with 2D connectivity for thermoelectric energy conversion. J. Mater. Chem. A 8, 12226–12261 (2020).

    Article 
    CAS 

    Google Scholar 

  • Anderson, O. L. in Equations of State of Solids for Geophysics and Ceramic Science, 3–30 (Oxford Univ. Press, 1995).

  • Imai, H., Shimakawa, Y. & Kubo, Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B. 64, 241104 (2001).

    Article 

    Google Scholar 

  • Beaumale, M. et al. Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater. 78, 86–92 (2014).

    Article 
    CAS 

    Google Scholar 

  • Guélou, G. et al. The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS2. J. Mater. Chem. C 4, 1871–1880 (2016).

    Article 

    Google Scholar 

  • Guilmeau, E., Bréard, Y. & Maignan, A. Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide. Appl. Phys. Lett. 99, 052107 (2011).

    Article 

    Google Scholar 

  • Barbier, T. et al. Silver intercalation in SPS dense TiS2: staging and thermoelectric properties. Dalton Trans. 44, 7887–7895 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nunna, R., Gascoin, F. & Guilmeau, E. Tuned thermoelectric properties of TiS1.5Se0.5 through copper intercalation. J. Alloys Compd. 634, 32–36 (2015).

    Article 
    CAS 

    Google Scholar 

  • Chattopadhyay, T., Pannetier, J. & von Schnering, H. G. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 47, 879–885 (1986).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv. Energy Mater. 5, 1500360 (2015).

    Article 

    Google Scholar 

  • Chen, C. L., Wang, H., Chen, Y. Y., Day, T. & Snyder, G. J. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lee, Y. K., Luo, Z., Cho, S. P., Kanatzidis, M. G. & Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3, 719–731 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chandra, S. et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater. 34, 2203725 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378–1384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, Q. et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A 2, 17302–17306 (2014).

    Article 
    CAS 

    Google Scholar 

  • Han, Y. M. et al. Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A 3, 4555–4559 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mangelis, P. et al. The effect of electron and hole doping on the thermoelectric properties of shandite-type Co3Sn2S2. J. Solid State Chem. 251, 204–210 (2017).

    Article 
    CAS 

    Google Scholar 

  • Corps, J. et al. Interplay of metal-atom ordering, Fermi level tuning, and thermoelectric properties in cobalt shandites Co3M2S2 (M = Sn, In). Chem. Mater. 27, 3946–3956 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mangelis, P., Vaqueiro, P. & Powell, A. V. Improved thermoelectric performance through double substitution in shandite-type mixed-metal sulfides. ACS Appl. Energy Mater. 3, 2168–2174 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corps, J., Vaqueiro, P. & Powell, A. V. Co3M2S2 (M = Sn, In) shandites as tellurium-free thermoelectrics. J. Mater. Chem. A 1, 6553–6557 (2013).

    Article 
    CAS 

    Google Scholar 

  • Labégorre, J.-B. et al. XBi4S7 (X = Mn, Fe): new cost-efficient layered n-type thermoelectric sulfides with ultralow thermal conductivity. Adv. Funct. Mater. 29, 1904112 (2019).

    Article 

    Google Scholar 

  • Sallis, S. et al. Role of lone pair electrons in determining the optoelectronic properties of BiCuOSe. Phys. Rev. B 85, 085207 (2012).

    Article 

    Google Scholar 

  • Liu, Y. et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem. Commun. 49, 8075–8077 (2013).

    Article 
    CAS 

    Google Scholar 

  • Berardan, D. et al. Structure and transport properties of the BiCuSeO-BiCuSO solid solution. Materials 8, 1043–1058 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Li, F., Wei, T. R., Kang, F. & Li, J. F. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J. Mater. Chem. A 1, 11942–11949 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, J. et al. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 5, 8543–8547 (2012).

    Article 
    CAS 

    Google Scholar 

  • Luu, S. D. N. & Vaqueiro, P. Synthesis, structural characterisation and thermoelectric properties of Bi1−xPbxOCuSe. J. Mater. Chem. A 1, 12270–12275 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc. 133, 20112–20115 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 137, 6587–6593 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 6, 1502423 (2016).

    Article 

    Google Scholar 

  • Luu, S. D. N. & Vaqueiro, P. Thermoelectric properties of BiOCu1−xMxSe (M = Cd and Zn). Semicond. Sci. Technol. 29, 064002 (2014).

    Article 
    CAS 

    Google Scholar 

  • Laurita, G. & Seshadri, R. Chemistry, structure, and function of lone pairs in extended solids. Acc. Chem. Res. 55, 1004–1014 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Orgel, L. E. The stereochemistry of B subgroup metals. Part II. The inert pair. J. Chem. Soc. (1959).

  • Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011).

    Article 
    CAS 

    Google Scholar 

  • Waghmare, U. V., Spaldin, N. A., Kandpal, H. C. & Seshadri, R. First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B. 67, 125111 (2003).

    Article 

    Google Scholar 

  • Walsh, A. & Watson, G. W. Influence of the anion on lone pair formation in Sn(II) monochalcogenides: a DFT study. J. Phys. Chem. B 109, 18868–18875 (2005).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J. et al. Dynamic lone pair expression as chemical bonding origin of giant phonon anharmonicity in thermoelectric InTe. Angew. Chem. Int. Ed. 62, e202218458 (2023).

    Article 
    CAS 

    Google Scholar 

  • Carnevali, V. et al. Lone pair rotation and bond heterogeneity leading to ultralow thermal conductivity in aikinite. J. Am. Chem. Soc. 145, 9313–9325 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Božin, E. S. et al. Entropically stabilized local dipole formation in lead chalcogenides. Science 330, 1660–1663 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Knight, K. S. Does altaite exhibit emphanitic behavior? A high resolution neutron powder diffraction investigation of the crystallographic and thermoelastic properties of PbTe between 10 and 500 K. Can. Mineral. 54, 1493–1503 (2016).

    Article 
    CAS 

    Google Scholar 

  • Keiber, T., Bridges, F. & Sales, B. C. Lead is not off center in PbTe: the importance of r-space phase information in extended X-ray absorption fine structure spectroscopy. Phys. Rev. Lett. 111, 095504 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, R. et al. Emphanitic anharmonicity in PbSe at high temperature and anomalous electronic properties in the PbQ (Q=S, Se, Te) system. Phys. Rev. B 98, 144108 (2018).

    Article 
    CAS 

    Google Scholar 

  • Knox, K. R., Bozin, E. S., Malliakas, C. D., Kanatzidis, M. G. & Billinge, S. J. L. Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 89, 014102 (2014).

    Article 

    Google Scholar 

  • Dutta, M., Pal, K., Etter, M., Waghmare, U. V. & Biswas, K. Emphanisis in cubic (SnSe)0.5(AgSbSe2)0.5: dynamical off-centering of anion leads to low thermal conductivity and high thermoelectric performance. J. Am. Chem. Soc. 143, 16839–16848 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kimber, S. A. J. et al. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. 22, 311–315 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeier, W. G. New tricks for optimizing thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4, 23–28 (2017).

    Article 

    Google Scholar 

  • Wang, X., Li, Z., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Lone pair driven anisotropy in antimony chalcogenide semiconductors. Phys. Chem. Chem. Phys. 24, 7195–7202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fabini, D. H., Seshadri, R. & Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45, 467–477 (2020).

    Article 

    Google Scholar 

  • Kurosaki, K. & Yamanaka, S. Low-thermal-conductivity group 13 chalcogenides as high-efficiency thermoelectric materials. Phys. Status Solidi A 210, 82–88 (2013).

    Article 
    CAS 

    Google Scholar 

  • Guo, Q., Assoud, A. & Kleinke, H. Improved bulk materials with thermoelectric figure-of-merit greater than 1: Tl10−xSnxTe6 and Tl10xPbxTe6. Adv. Energy Mater. 4, 1400348 (2014).

    Article 

    Google Scholar 

  • Yuan, J., Chen, Y. & Liao, B. Lattice dynamics and thermal transport in semiconductors with anti-bonding valence bands. J. Am. Chem. Soc. 145, 18506–18515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lucovsky, G. & White, R. M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    Article 
    CAS 

    Google Scholar 

  • Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C. & Raty, J.-Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).

    Article 

    Google Scholar 

  • Guarneri, L. et al. Metavalent bonding in crystalline solids: how does it collapse? Adv. Mater. 33, 2102356 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wuttig, M. et al. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. Adv. Mater. 35, 2208485 (2023).

    Article 
    CAS 

    Google Scholar 

  • Arora, R., Waghmare, U. V. & Rao, C. N. R. Metavalent bonding origins of unusual properties of group IV chalcogenides. Adv. Mater. 35, 2208724 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jones, R. O., Elliott, S. R. & Dronskowski, R. The myth of “metavalency” in phase‐change materials. Adv. Mater. 35, 2300836 (2023).

    Article 
    CAS 

    Google Scholar 

  • Green, M. L. H., Parkin, G. in The Chemical Bond III. Structure and Bonding, Vol. 171 (ed. Mingos, D. M.) 79–139 (Springer, 2016).

  • Chatterjee, S. Multicenter bonding and the electron deficient molecules with special emphasis to boron and aluminium compounds. Russ. J. Phys. Chem. A 93, 1116–1121 (2019).

    Article 

    Google Scholar 

  • Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Maria, I. et al. Metavalent bonding-mediated dual 6s2 lone pair expression leads to intrinsic lattice shearing in n-type TlBiSe2. J. Am. Chem. Soc. 145, 9292–9303 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar, D. et al. Metavalent bonding in GeSe leads to high thermoelectric performance. Angew. Chem. Int. Ed. 60, 10350–10358 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yu, Y. et al. Doping by design: enhanced thermoelectric performance of GeSe alloys through metavalent bonding. Adv. Mater. 35, 2300893 (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Improved solubility in metavalently bonded solid leads to band alignment, ultralow thermal conductivity, and high thermoelectric performance in SnTe. Adv. Funct. Mater. 32, 2209980 (2022).

    Article 
    CAS 

    Google Scholar 

  • Luu, S. D. N. & Vaqueiro, P. Layered oxychalcogenides: structural chemistry and thermoelectric properties. J. Materiomics 2, 131–140 (2016).

    Article 

    Google Scholar 

  • Tippireddy, S., D S, P. K., Das, S. & Mallik, R. C. Oxychalcogenides as thermoelectric materials: an overview. ACS Appl. Energy Mater. 4, 2022–2040 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kageyama, H. et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 02838 (2018).

    Article 

    Google Scholar 

  • Newnham, J. A. et al. Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs. J. Mater. Chem. A 11, 15739–15748 (2023).

    Article 
    CAS 

    Google Scholar 

  • Mark, J. et al. Ultralow thermal conductivity in the mixed-anion solid solution Sn2SbS2−xSexI3. J. Mater. Chem. A 11, 10213–10221 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sato, N. et al. Bonding heterogeneity in mixed-anion compounds realizes ultralow lattice thermal conductivity. J. Mater. Chem. A 9, 22660–22669 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hodges, J. M. et al. Two-dimensional CsAg5Te3−xSx semiconductors: multi-anion chalcogenides with dynamic disorder and ultralow thermal conductivity. Chem. Mater. 30, 7245–7254 (2018).

    Article 
    CAS 

    Google Scholar 

  • Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, K. et al. Short-range order in defective half-Heusler thermoelectric crystals. Energy Environ. Sci. 12, 1568 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, C. et al. Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2. Nat. Commun. 12, 5718 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeuthen, C. M., Thorup, P. S., Roth, N. & Iversen, B. B. Reconciling crystallographic and physical property measurements on thermoelectric lead sulfide. J. Am. Chem. Soc. 141, 8146–8157 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sangiorgio, B. et al. Correlated local dipoles in PbTe. Phys. Rev. Mater. 2, 085402 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sarkar, D., Bhui, A., Maria, I., Dutta, M. & Biswas, K. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chem. Soc. Rev. 53, 6100–6149 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth, N. & Iversen, B. B. Solving the disordered structure of β-Cu2−xSe using the three-dimensional difference pair distribution function. Acta Crystallogr. A 75, 465–473 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xie, C., Tang, X. & Tan, G. Off-centering thermoelectrics. Next Mater. 1, 100048 (2023).

    Article 

    Google Scholar 

  • Dutta, M. et al. Local symmetry breaking suppresses thermal conductivity in crystalline solids. Angew. Chem. Int. Ed. 61, e202200071 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bozin, E. S. et al. Local Sn dipolar-character displacements behind the low thermal conductivity in SnSe thermoelectric. Phys. Rev. Lett. 131, 036101 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shamoto, S. et al. Large displacement of germanium atoms in crystalline Ge2Sb2Te5. Appl. Phys. Lett. 86, 081904 (2005).

    Article 

    Google Scholar 

  • Zhu, H. et al. Manipulating lattice distortion to promote average thermoelectric power factor in metavalently bonded AgBiSe2. Acta Mater. 259, 119260 (2023).

    Article 
    CAS 

    Google Scholar 

  • Rathore, E. et al. Origin of ultralow thermal conductivity in n-type cubic bulk AgBiS2: soft Ag vibrations and local structural distortion induced by the Bi 6s2 lone pair. Chem. Mater. 31, 2106–2113 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hodges, J. M. et al. Chemical insights into PbSe−x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms. J. Am. Chem. Soc. 140, 18115–18123 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, S. et al. Discordant nature of Cd in PbSe: off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy Environ. Sci. 13, 200–211 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sales, B. C., Chakoumakos, Jin, R., Thompson, J. R. & Mandrus, D. Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys. Rev. B 63, 245113 (2001).

    Article 

    Google Scholar 

  • Xie, H. et al. Hidden local symmetry breaking in silver diamondoid compounds is root cause of ultralow thermal conductivity. Adv. Mater. 34, 2202255 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mineral commodity summaries 2019 U.S. Geological Survey (2019).

  • Nieroda, P. et al. Si–O–C amorphous coatings as a perspective protection against oxidation-caused degradation of Cu2S superionic thermoelectric materials. Ceram. Int. 47, 12992–12996 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gucci, F. et al. Oxidation protective hybrid coating for thermoelectric mater. Materials 12, 573 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohra, A. et al. Study of thermal stability of Cu2Se thermoelectric material. AIP Conf. Proc. 1731, 110010 (2016).

    Article 

    Google Scholar 

  • Brown, D. R., Day, T., Caillat, T. & Snyder, G. J. Chemical stability of (Ag,Cu)2Se: a historical overview. J. Electron. Mater. 42, 2014–2019 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yang, D. et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Adv. Mater. 32, 2003730 (2020).

    Article 
    CAS 

    Google Scholar 

  • Qiu, P. et al. Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nat. Commun. 9, 2910 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Z. et al. Enhanced thermoelectric properties of MnxCu1.8S via tuning band structure and scattering multiscale phonons. J. Materiomics 7, 556–562 (2021).

    Article 

    Google Scholar 

  • Mao, T. et al. Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions. Adv. Funct. Mater. 30, 1908315 (2019).

    Article 

    Google Scholar 

  • Olvera, A. A. et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668–1676 (2017).

    Article 
    CAS 

    Google Scholar 

  • Li, M. et al. Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes. Nano Energy 53, 993–1002 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nunna, R. et al. Ultrahigh thermoelectric performance in Cu2Se based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. 10, 1928–1935 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhao, L. et al. Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy 41, 164–171 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bohra, A. K. et al. Stabilizing thermoelectric figure-of-merit of superionic conductor Cu2Se through W nanoinclusion. Phys. Status Solidi Rapid Res. Lett. 14, 2000102 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, X.-Q. et al. Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Metals 40, 2017–2025 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, P. et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule 3, 1538–1548 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hu, H. et al. Highly stabilized and efficient thermoelectric copper selenide. Nat. Mater. 23, 527–534 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    Article 
    CAS 

    Google Scholar 

  • Maleki, R., Asadnia, M. & Razmjou, A. Artificial intelligence-based material discovery for clean energy future. Adv. Intell. Syst. 4, 2200073 (2022).

    Article 

    Google Scholar 

  • Chen, C. et al. A critical review of machine learning of energy materials. Adv. Energy Mater. 10, 1903242 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pöhls, J.-H. et al. Experimental validation of high thermoelectric performance in RECuZnP2 predicted by high-throughput DFT calculations. Mater. Horiz. 8, 209–215 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, X. et al. A critical review of machine learning techniques on thermoelectric materials. J. Phys. Chem. Lett. 14, 1808–1822 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Large data set-driven machine learning models for accurate prediction of the thermoelectric figure of merit. ACS Appl. Mater. Interfaces 14, 55517–55527 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, T., Zhang, C., Snoussi, H. & Zhang, G. Machine learning approaches for thermoelectric materials research. Adv. Funct. Mater. 30, 1906041 (2020).

    Article 
    CAS 

    Google Scholar 

  • Han, G., Sun, Y., Feng, Y., Lin, G. & Lu, N. Artificial intelligence guided thermoelectric materials design and discovery. Adv. Electron. Mater. 9, 2300042 (2023).

    Article 
    CAS 

    Google Scholar 

  • Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

    CAS 

    Google Scholar 

  • Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010).

    Article 
    CAS 

    Google Scholar 

  • Chernyavsky, D., Brink, J. V. D., Park, G.-H., Nielsch, K. & Thomas, A. Sustainable thermoelectric materials predicted by machine learning. Adv. Theory Simul. 5, 2200351 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cheetham, A. K. & Seshadri, R. Artificial intelligence driving materials discovery? Perspective on the article: deep learning for materials discovery. Chem. Mater. 36, 3490–3495 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2, 976–987 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).

    Article 

    Google Scholar 

  • Burdett, J. K. Chemical Bonding in Solids (Oxford Univ. Press, 1995).

  • Mecholsky, N. A., Al Rahal Al Orabi, R. & Fornari, M. in Inorganic Thermoelectric Materials: from Fundamental Concepts to Materials Design (ed. Powell, A. V.) Ch. 2 (Royal Society of Chemistry, 2021).

  • Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1995).

  • MacDonald, D. K. C. & Roy, S. K. Vibrational anharmonicity and lattice thermal properties. Phys. Rev. 97, 673–676 (1955).

    Article 
    CAS 

    Google Scholar 

  • Gutiérrez Moreno, J. J., Cao, J., Fronzi, M. & Assadi, M. H. N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 9, 16 (2020).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *