Exploiting chemical bonding principles to design high-performance thermoelectric materials

Freer, R. & Powell, A. V. Realising the potential of thermoelectric technology: a roadmap. J. Mater. Chem. C 8, 441–463 (2020).
Google Scholar
Zaia, E. W., Gordon, M. P., Yuan, P. & Urban, J. J. Progress and perspective: soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 5, 1800823 (2019).
Google Scholar
Hasan, M. N., Nafea, M., Nayan, N. & Mohamed Ali, M. S. Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices. Adv. Mater. Technol. 7, 2101203 (2022).
Google Scholar
Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).
Google Scholar
Ghosh, T., Dutta, M., Sarkar, D. & Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics. J. Am. Chem. Soc. 144, 10099–10118 (2022).
Google Scholar
Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009).
Google Scholar
Slack, G. A. in CRC Handbook of Thermoelectrics 1st edn (ed. Rowe, D. M.) 407–440 (CRC Press, 1995).
Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).
Google Scholar
Kanatzidis, M. G. Nanostructured thermoelectrics: the new paradigm? Chem. Mater. 22, 648–659 (2010).
Google Scholar
Zhao, L. D. et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compnd. 455, 259–264 (2008).
Google Scholar
Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).
Google Scholar
Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993).
Google Scholar
Vaney, J. B., Yamini, S. A., Takaki, H., Kobayashi, K. & Mori, T. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater. Today Phys. 9, 10090 (2019).
Powell, A. V. & Vaqueiro, P. in Thermoelectric Materials and Devices (eds Nandhakumar, I. et al.) Ch. 2 (Royal Society of Chemistry, 2016).
Zhao, L. D. et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7, 2900–2924 (2014).
Google Scholar
Hébert, S. et al. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides. J. Phys. Condens. Matter 28, 013001 (2016).
Google Scholar
Rull-Bravo, M., Moure, A., Fernández, J. F. & Martín-González, M. Skutterudites as thermoelectric materials: revisited. RSC Adv. 5, 41653–41667 (2015).
Google Scholar
Bos, J. W. G. & Downie, R. A. Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Mattter 26, 433201 (2014).
Google Scholar
Toberer, E. S., May, A. F. & Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010).
Google Scholar
Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).
Google Scholar
Kleinke, H. New bulk materials for thermoelectric power generation: clathrates and complex antimonides. Chem. Mater. 22, 604–611 (2010).
Google Scholar
Takabatake, T. in Thermoelectric Nanomaterials Materials Design and Applications (eds Koumoto, K. & Mori, T.) Ch. 2 (Springer, 2013).
Nozariasbmarz, A. et al. Thermoelectric silicides: a review. Jpn. J. Appl. Phys. 56, 05DA04 (2017).
Google Scholar
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
Google Scholar
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
Google Scholar
Ren, P. et al. Recent advances in inorganic material thermoelectrics. Inorg. Chem. Front. 5, 2380–2398 (2018).
Google Scholar
Hendricks, T., Caillat, T. & Mori, T. Keynote review of latest advances in thermoelectric generation materials, devices, and technologies 2022. Energies 15, 7307 (2022).
Google Scholar
Powell, A. V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. J. Appl. Phys. 126, 100901 (2019).
Google Scholar
Norman, C., Azough, F. & Freer, R. in Thermoelectric Materials and Devices (eds Nandhakumar, I. et al.) Ch. 3 (Royal Society of Chemistry, 2016).
Bos, J. W. in Inorganic Thermoelectric Materials: from Fundamental Concepts to Materials Design (ed. Powell, A. V.) Ch. 5 (Royal Society of Chemistry, 2021).
Freer, R. et al. Key properties of inorganic thermoelectric materials—tables (version 1). J. Phys. Energy 4, 022002 (2022).
Google Scholar
Wang, H., Wang, J., Cai, A. & Snyder, G. J. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J. Mater. Chem. A 2, 3169–3174 (2014).
Google Scholar
Zeier, W. G. et al. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4 xSx. J. Mater. Chem. A 2, 1790–1794 (2014).
Google Scholar
Gascoin, F., Raghavendra, N., Guilmeau, E. & Bréard, Y. CdI2 structure type as potential thermoelectric materials: synthesis and high temperature thermoelectric properties of the solid solution TiSxSe2−x. J. Alloys Compd. 521, 121–125 (2012).
Google Scholar
Pavan Kumar, V. et al. The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu5FeS4 bornite. Dalton Trans. 46, 2174–2183 (2017).
Google Scholar
Ul Islam, A. K. M. F., Helal, M. A., Liton, M. N. H., Kamruzzaman, M. & Islam, M. T. H. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (Ch = S, Se, Te). Indian J. Phys. 91, 403–412 (2017).
Google Scholar
Albanesi, E. A., Okoye, C. M. I., Rodriguez, C. O., Pelzer, Y., Blanca, E. L. & Petukhov, A. G. Electronic structure, structural properties, and dielectric functions of IV-VI semiconductors: PbSe and PbTe. Phys. Rev. B 61, 16589–16595 (2000).
Google Scholar
Wang, H., Pei, Y., LaLonde, A. D. & Snyder, G. J. in Thermoelectric Nanomaterials Materials Design and Applications (eds Koumoto, K. & Mori, T.) Ch. 2 (Springer, 2013).
Pei, Y., LaLonde, A., Wang, H. & Snyder, G. J. Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5, 7963–7969 (2012).
Google Scholar
Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).
Google Scholar
Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).
Google Scholar
Zhao, L. D. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).
Google Scholar
Liu, W. et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).
Google Scholar
Yin, K. et al. Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1−x−yGexSny ternary solid solution. Chem. Mater. 28, 5538–5548 (2016).
Google Scholar
Tang, Y. et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14, 1223–1228 (2015).
Google Scholar
Hanus, R. et al. A chemical understanding of the band convergence in thermoelectric CoSb3 skutterudites: influence of electron population, local thermal expansion, and bonding interactions. Chem. Mater. 29, 1156–1164 (2017).
Google Scholar
Zeier, W. G. et al. Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4. J. Mater. Chem. C 2, 10189–10194 (2014).
Google Scholar
Zhang, J. et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 26, 3848–3853 (2014).
Google Scholar
Ioffe, A. V. Dependence of the thermal conductivity of the crystal lattice on the degree of ionicity of compounds. Sov. Phys. Solid State 5, 2446 (1963).
Spitzer, D. P. Lattice thermal conductivity of semiconductors: a chemical bond approach. J. Phys. Chem. Solids 31, 19–40 (1970).
Google Scholar
Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed. 55, 6826–6841 (2016).
Google Scholar
Morelli, D. T. & Slack, G. A. in High Thermal Conductivity Materials. (eds Shindé, S. L. & Goela, J. S.) Ch. 2 (Springer, 2006).
Morelli, D. T., Jovovic, V. & Heremans, J. P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).
Google Scholar
Lai, W., Wang, Y., Morelli, D. T. & Lu, X. From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely. Adv. Funct. Mater. 25, 3648–3657 (2015).
Google Scholar
Vaqueiro, P. et al. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Phys. Chem. Chem. Phys. 17, 31735–31740 (2015).
Google Scholar
Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).
Google Scholar
Du, B., Zhang, R., Chen, K., Mahajan, A. & Reece, M. J. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. J. Mater. Chem. A 5, 3249–3259 (2017).
Google Scholar
Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).
Google Scholar
Skoug, E. & Morelli, D. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys. Rev. Lett. 107, 235901 (2011).
Google Scholar
Zhang, Y. et al. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors. Phys. Rev. B 85, 054306 (2012).
Google Scholar
Tippireddy, S. et al. Local structural distortions and reduced thermal conductivity in Ge-substituted chalcopyrite. J. Mater. Chem. A 10, 23874–23885 (2022).
Google Scholar
Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. (2007).
Peng, W., Chanakian, S. & Zevalkink, A. Crystal chemistry and thermoelectric transport of AM2X2 compounds. Inorg. Chem. Front. 5, 1744 (2018).
Google Scholar
Wood, M., Kuo, J. J., Imasato, K. & Snyder, G. J. Improvement of low-temperature zT in a Mg3Sb2–Mg3Bi2 solid solution via Mg-vapor annealing. Adv. Mater. 31, 1902337 (2019).
Google Scholar
Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).
Google Scholar
Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).
Google Scholar
Chen, X. et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy 52, 246–255 (2018).
Google Scholar
Sun, J. & Singh, D. J. Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds. J. Mater. Chem. A 5, 8499–8509 (2017).
Google Scholar
Wang, X.-J. et al. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2. Appl. Phys. Lett. 94, 092106 (2009).
Google Scholar
Zhang, J., Song, L., Sist, M., Tolborg, K. & Iversen, B. B. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nat. Commun. 9, 4716 (2018).
Google Scholar
Zhang, J., Song, L. & Iversen, B. B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. npj Comput. Mater. 5, 76 (2019).
Google Scholar
Peng, W., Petretto, G., Rignanese, G.-M., Hautier, G. & Zevalkink, A. An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure. Joule 2, 1879–1893 (2018).
Google Scholar
Howells, W. S., Barnes, A. C. & Hamilton, M. Quasielastic neutron scattering and the dynamics of Mg2+ in the fast ion and liquid phases of Mg3Bi2. Phys. B 266, 97–99 (1999).
Google Scholar
Koumpouras, K. & Larsson, J. A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter 32, 315502 (2020).
Google Scholar
Esser, S. The quantum theory of atoms in molecules and the interactive conception of chemical bonding. Philos. Sci. 86, 1307–1317 (2019).
Google Scholar
Grin, Y. Inhomogeneity and anisotropy of chemical bonding and thermoelectric properties of materials. J. Solid State Chem. 274, 329–336 (2019).
Google Scholar
Tolborg, K. & Iversen, B. B. Chemical bonding origin of the thermoelectric power factor in Half-Heusler semiconductors. Chem. Mater. 33, 5308–5316 (2021).
Google Scholar
Beekman, M., Morelli, D. T. & Nolas, G. S. Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182–1185 (2015).
Google Scholar
Zhao, K., Qiu, P., Shi, X. & Chen, L. Recent advances in liquid-like thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2020).
Google Scholar
Rogl, G. & Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
Google Scholar
Brorsson, J., Zhang, Y., Palmqvist, A. E. C. & Erhart, P. Order–disorder transition in inorganic clathrates controls electrical transport properties. Chem. Mater. 33, 4500–4509 (2021).
Google Scholar
Pailhès, S. et al. From phonons to the thermal properties of complex thermoelectric crystals: the case of type-I clathrates. Results Phys. 49, 106487 (2023).
Google Scholar
Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).
Google Scholar
Lara-Curzio, E. et al. Low-temperature heat capacity and localized vibrational modes in natural and synthetic tetrahedrites. J. Appl. Phys. 115, 193515 (2014).
Google Scholar
Toberer, E. S., Zevalkink, A. & Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).
Google Scholar
Prado-Gonjal, J., Vaqueiro, P., Kowalczyk, R. M., Smith, R. I. & Powell, A. V. Lithium-filled skutterudites by intercalation at ambient-temperature. Z. Anorg. Allg. Chem. 649, e202300087 (2023).
Google Scholar
Gainza, J. et al. Unveiling the correlation between the crystalline structure of M-filled CoSb3 (M = Y, K, Sr) skutterudites and their thermoelectric transport properties. Adv. Funct. Mater. 30, 2001651 (2020).
Google Scholar
Koza, M. M. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805–810 (2008).
Google Scholar
Bridges, F. et al. Complex vibrations in arsenide skutterudites and oxyskutterudites. Phys. Rev. B 91, 014109 (2015).
Google Scholar
Shi, X. et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).
Google Scholar
Yang, J., Zhang, W., Bai, S. Q., Mei, Z. & Chen, L. D. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).
Google Scholar
Wille, H.-C. et al. Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering. Phys. Rev. B 76, 140301 (2007).
Google Scholar
Dimitrov, I. K. et al. Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12. Phys. Rev. B 82, 174301 (2010).
Google Scholar
Feldman, J. L., Singh, D. J., Mazin, I. I., Mandrus, D. & Sales, B. C. Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev. B 61, R9209 (2000).
Google Scholar
Rogl, G. & Rogl, P. F. Filled Sb-Based Skutterudites from 1996–2022. Crystals 12, 1843 (2022).
Google Scholar
Rogl, G. et al. Multifilled nanocrystalline p-type didymium – skutterudites with ZT>1.2. Intermetallics 18, 2435–2444 (2010).
Google Scholar
Rogl, G. et al. Influence of shear strain on HPT-processed n-type skutterudites yielding ZT = 2.1. J. Alloys Compd. 855, 157409 (2021).
Google Scholar
Rogl, G., Zehetbauer, M. J. & Rogl, P. F. The effect of severe plastic deformation on thermoelectric performance of skutterudites, Half-Heuslers and Bi-Tellurides. Mater. Trans. 60, 2071–2085 (2019).
Google Scholar
Fleurial, J.-P., Borshchevsky, A., Caillat, T., Morelli, D. T. & Meisner, G. P. High figure of merit in Ce-filled skutterudites. In Fifteenth International Conference on Thermoelectrics. Proc. ICT ‘96 91–95 (IEEE, 1996).
Meng, X. et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Mater. 98, 405–415 (2015).
Google Scholar
Dolyniuk, J.-A., Owens-Baird, B., Wang, J., Zaikina, J. V. & Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 108, 1–46 (2016).
Google Scholar
Nolas, G. S. (ed.) The Physics and Chemistry of Inorganic Clathrates (Springer, 2014).
Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014).
Google Scholar
Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R Rep. 138, 100501 (2019).
Google Scholar
Roy, S. et al. Occupational disorder as the origin of flattening of the acoustic phonon branches in the clathrate Ba8Ga16Ge30. Phys. Rev. B 107, L020301 (2023).
Google Scholar
Blake, N. P., Latturner, S., Bryan, J. D., Stucky, G. D. & Metiu, H. Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga17Si30 and Ba8In16Sn30. J. Chem. Phys. 115, 8060–8073 (2001).
Google Scholar
Saramat, A. et al. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J. Appl. Phys. 99, 023708 (2006).
Google Scholar
Deng, S. K., Saiga, Y., Suekuni, K. & Takabatake, T. Effect of Al substitution on the thermoelectric properties of the type VIII clathrate Ba8Ga16Sn30. J. Electron. Mater. 40, 1124–1128 (2011).
Google Scholar
Saiga, Y., Du, B., Deng, S. K., Kajisa, K. & Takabatake, T. Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. J. Alloys Compd. 537, 303–307 (2012).
Google Scholar
Jana, M. K., Pal, K., Waghmare, U. V. & Biswas, K. The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling. Angew. Chem. Int. Ed. 55, 7792–7796 (2016).
Google Scholar
Luu, S. D. N. et al. Origin of low thermal conductivity in In4Se3. ACS Appl. Energy Mater. 3, 12549–12556 (2020).
Google Scholar
Voneshen, D. J. et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat. Mater. 12, 1028–1032 (2013).
Google Scholar
Lemoine, P., Guèlou, G., Raveau, B. & Guilmeau, E. Crystal structure classification of copper-based sulfides as a tool for the design of inorganic functional materials. Angew. Chem. Int. Ed. 61, e202108686 (2022).
Google Scholar
He, J. et al. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles. Adv. Funct. Mater. 32, 2108532 (2022).
Google Scholar
Jaffe, J. E. & Zunger, A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882–1906 (1984).
Google Scholar
Voneshen, D. J., Walker, H. C., Re.fson, K. & Goff, J. P. Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide. Phys. Rev. Lett. 118, 145901 (2017).
Google Scholar
Niedziela, J. L. et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. Nat. Phys. 15, 73–78 (2019).
Google Scholar
Ren, Q. et al. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat. Mater. 22, 999–1006 (2023).
Google Scholar
He, Y., Zhang, T., Shi, X., Wei, S.-H. & Chen, L. High thermoelectric performance in copper telluride. NPG Asia Mater. 7, e210 (2015).
Google Scholar
He, Y. et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014).
Google Scholar
Wei, T.-R., Qiu, P., Zhao, K., Shi, X. & Chen, L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv. Mater. 35, 2110236 (2023).
Google Scholar
Roychowdhury, S. et al. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angew. Chem. Int. Ed. 57, 4043–4047 (2018).
Google Scholar
Lin, S., Li, W. & Pei, Y. Thermally insulative thermoelectric argyrodites. Mater. Today 48, 198–213 (2021).
Google Scholar
Lin, S. et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 1, 816–830 (2017).
Google Scholar
Vaqueiro, P. et al. The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites. Chem. Mater. 29, 4080–4090 (2017).
Google Scholar
Xie, H. et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc. 145, 3211–3220 (2023).
Google Scholar
Rana, K. S. & Soni, A. Thermoelectricity in Ag/Cu-based complex crystal structure minerals with inherent low thermal conductivity. Oxf. Open Mater. Sci. 3, itad005 (2023).
Google Scholar
Zhao, T., Wang, Y.-A., Zhao, Z.-Y., Liu, Q. & Liu, Q.-J. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations. Mater. Res. Express 5, 016305 (2018).
Google Scholar
Zhang, Z. et al. Cu2Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).
Google Scholar
Zhao, K. et al. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater. Today Phys. 1, 14–23 (2017).
Google Scholar
Yang, D. et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. J. Mater. Chem. A 5, 23243–23251 (2017).
Google Scholar
Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3, 458–463 (2004).
Google Scholar
Lin, J. et al. Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance. J. Am. Chem. Soc. 136, 1497–1504 (2014).
Google Scholar
Nylén, J., Andersson, M., Lidin, S. & Häussermann, U. The structure of α-Zn4Sb3: ordering of the phonon-glass thermoelectric material β-Zn4Sb3. J. Am. Chem. Soc. 126, 16306–16307 (2004).
Google Scholar
Zhao, H. et al. High thermoelectric performance of MgAgSb-based materials. Nano Energy 7, 97–103 (2014).
Google Scholar
Li, D. et al. Atomic disorders induced by silver and magnesium ion migrations favor high thermoelectric performance in α-MgAgSb-based materials. Adv. Funct. Mater. 25, 6478–6488 (2015).
Google Scholar
Mukherjee, S. et al. Beyond rattling: tetrahedrites as incipient ionic conductors. Adv. Mater. 35, 2306088 (2023).
Google Scholar
Samanta, M., Ghosh, T., Chandra, S. & Biswas, K. Layered materials with 2D connectivity for thermoelectric energy conversion. J. Mater. Chem. A 8, 12226–12261 (2020).
Google Scholar
Anderson, O. L. in Equations of State of Solids for Geophysics and Ceramic Science, 3–30 (Oxford Univ. Press, 1995).
Imai, H., Shimakawa, Y. & Kubo, Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B. 64, 241104 (2001).
Google Scholar
Beaumale, M. et al. Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater. 78, 86–92 (2014).
Google Scholar
Guélou, G. et al. The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS2. J. Mater. Chem. C 4, 1871–1880 (2016).
Google Scholar
Guilmeau, E., Bréard, Y. & Maignan, A. Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide. Appl. Phys. Lett. 99, 052107 (2011).
Google Scholar
Barbier, T. et al. Silver intercalation in SPS dense TiS2: staging and thermoelectric properties. Dalton Trans. 44, 7887–7895 (2015).
Google Scholar
Nunna, R., Gascoin, F. & Guilmeau, E. Tuned thermoelectric properties of TiS1.5Se0.5 through copper intercalation. J. Alloys Compd. 634, 32–36 (2015).
Google Scholar
Chattopadhyay, T., Pannetier, J. & von Schnering, H. G. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 47, 879–885 (1986).
Google Scholar
Zhang, Q. et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv. Energy Mater. 5, 1500360 (2015).
Google Scholar
Chen, C. L., Wang, H., Chen, Y. Y., Day, T. & Snyder, G. J. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014).
Google Scholar
Lee, Y. K., Luo, Z., Cho, S. P., Kanatzidis, M. G. & Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3, 719–731 (2019).
Google Scholar
Chandra, S. et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater. 34, 2203725 (2022).
Google Scholar
Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378–1384 (2021).
Google Scholar
Tan, Q. et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A 2, 17302–17306 (2014).
Google Scholar
Han, Y. M. et al. Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A 3, 4555–4559 (2015).
Google Scholar
Mangelis, P. et al. The effect of electron and hole doping on the thermoelectric properties of shandite-type Co3Sn2S2. J. Solid State Chem. 251, 204–210 (2017).
Google Scholar
Corps, J. et al. Interplay of metal-atom ordering, Fermi level tuning, and thermoelectric properties in cobalt shandites Co3M2S2 (M = Sn, In). Chem. Mater. 27, 3946–3956 (2015).
Google Scholar
Mangelis, P., Vaqueiro, P. & Powell, A. V. Improved thermoelectric performance through double substitution in shandite-type mixed-metal sulfides. ACS Appl. Energy Mater. 3, 2168–2174 (2020).
Google Scholar
Corps, J., Vaqueiro, P. & Powell, A. V. Co3M2S2 (M = Sn, In) shandites as tellurium-free thermoelectrics. J. Mater. Chem. A 1, 6553–6557 (2013).
Google Scholar
Labégorre, J.-B. et al. XBi4S7 (X = Mn, Fe): new cost-efficient layered n-type thermoelectric sulfides with ultralow thermal conductivity. Adv. Funct. Mater. 29, 1904112 (2019).
Google Scholar
Sallis, S. et al. Role of lone pair electrons in determining the optoelectronic properties of BiCuOSe. Phys. Rev. B 85, 085207 (2012).
Google Scholar
Liu, Y. et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem. Commun. 49, 8075–8077 (2013).
Google Scholar
Berardan, D. et al. Structure and transport properties of the BiCuSeO-BiCuSO solid solution. Materials 8, 1043–1058 (2015).
Google Scholar
Li, F., Wei, T. R., Kang, F. & Li, J. F. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J. Mater. Chem. A 1, 11942–11949 (2013).
Google Scholar
Li, J. et al. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 5, 8543–8547 (2012).
Google Scholar
Luu, S. D. N. & Vaqueiro, P. Synthesis, structural characterisation and thermoelectric properties of Bi1−xPbxOCuSe. J. Mater. Chem. A 1, 12270–12275 (2013).
Google Scholar
Liu, Y. et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc. 133, 20112–20115 (2011).
Google Scholar
Li, Z. et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 137, 6587–6593 (2015).
Google Scholar
Liu, Y. et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 6, 1502423 (2016).
Google Scholar
Luu, S. D. N. & Vaqueiro, P. Thermoelectric properties of BiOCu1−xMxSe (M = Cd and Zn). Semicond. Sci. Technol. 29, 064002 (2014).
Google Scholar
Laurita, G. & Seshadri, R. Chemistry, structure, and function of lone pairs in extended solids. Acc. Chem. Res. 55, 1004–1014 (2022).
Google Scholar
Orgel, L. E. The stereochemistry of B subgroup metals. Part II. The inert pair. J. Chem. Soc. (1959).
Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011).
Google Scholar
Waghmare, U. V., Spaldin, N. A., Kandpal, H. C. & Seshadri, R. First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B. 67, 125111 (2003).
Google Scholar
Walsh, A. & Watson, G. W. Influence of the anion on lone pair formation in Sn(II) monochalcogenides: a DFT study. J. Phys. Chem. B 109, 18868–18875 (2005).
Google Scholar
Zhang, J. et al. Dynamic lone pair expression as chemical bonding origin of giant phonon anharmonicity in thermoelectric InTe. Angew. Chem. Int. Ed. 62, e202218458 (2023).
Google Scholar
Carnevali, V. et al. Lone pair rotation and bond heterogeneity leading to ultralow thermal conductivity in aikinite. J. Am. Chem. Soc. 145, 9313–9325 (2023).
Google Scholar
Božin, E. S. et al. Entropically stabilized local dipole formation in lead chalcogenides. Science 330, 1660–1663 (2010).
Google Scholar
Knight, K. S. Does altaite exhibit emphanitic behavior? A high resolution neutron powder diffraction investigation of the crystallographic and thermoelastic properties of PbTe between 10 and 500 K. Can. Mineral. 54, 1493–1503 (2016).
Google Scholar
Keiber, T., Bridges, F. & Sales, B. C. Lead is not off center in PbTe: the importance of r-space phase information in extended X-ray absorption fine structure spectroscopy. Phys. Rev. Lett. 111, 095504 (2013).
Google Scholar
Yu, R. et al. Emphanitic anharmonicity in PbSe at high temperature and anomalous electronic properties in the PbQ (Q=S, Se, Te) system. Phys. Rev. B 98, 144108 (2018).
Google Scholar
Knox, K. R., Bozin, E. S., Malliakas, C. D., Kanatzidis, M. G. & Billinge, S. J. L. Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 89, 014102 (2014).
Google Scholar
Dutta, M., Pal, K., Etter, M., Waghmare, U. V. & Biswas, K. Emphanisis in cubic (SnSe)0.5(AgSbSe2)0.5: dynamical off-centering of anion leads to low thermal conductivity and high thermoelectric performance. J. Am. Chem. Soc. 143, 16839–16848 (2021).
Google Scholar
Kimber, S. A. J. et al. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. 22, 311–315 (2023).
Google Scholar
Zeier, W. G. New tricks for optimizing thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4, 23–28 (2017).
Google Scholar
Wang, X., Li, Z., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Lone pair driven anisotropy in antimony chalcogenide semiconductors. Phys. Chem. Chem. Phys. 24, 7195–7202 (2022).
Google Scholar
Fabini, D. H., Seshadri, R. & Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45, 467–477 (2020).
Google Scholar
Kurosaki, K. & Yamanaka, S. Low-thermal-conductivity group 13 chalcogenides as high-efficiency thermoelectric materials. Phys. Status Solidi A 210, 82–88 (2013).
Google Scholar
Guo, Q., Assoud, A. & Kleinke, H. Improved bulk materials with thermoelectric figure-of-merit greater than 1: Tl10−xSnxTe6 and Tl10−xPbxTe6. Adv. Energy Mater. 4, 1400348 (2014).
Google Scholar
Yuan, J., Chen, Y. & Liao, B. Lattice dynamics and thermal transport in semiconductors with anti-bonding valence bands. J. Am. Chem. Soc. 145, 18506–18515 (2023).
Google Scholar
Lucovsky, G. & White, R. M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).
Google Scholar
Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C. & Raty, J.-Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).
Google Scholar
Guarneri, L. et al. Metavalent bonding in crystalline solids: how does it collapse? Adv. Mater. 33, 2102356 (2021).
Google Scholar
Wuttig, M. et al. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. Adv. Mater. 35, 2208485 (2023).
Google Scholar
Arora, R., Waghmare, U. V. & Rao, C. N. R. Metavalent bonding origins of unusual properties of group IV chalcogenides. Adv. Mater. 35, 2208724 (2023).
Google Scholar
Jones, R. O., Elliott, S. R. & Dronskowski, R. The myth of “metavalency” in phase‐change materials. Adv. Mater. 35, 2300836 (2023).
Google Scholar
Green, M. L. H., Parkin, G. in The Chemical Bond III. Structure and Bonding, Vol. 171 (ed. Mingos, D. M.) 79–139 (Springer, 2016).
Chatterjee, S. Multicenter bonding and the electron deficient molecules with special emphasis to boron and aluminium compounds. Russ. J. Phys. Chem. A 93, 1116–1121 (2019).
Google Scholar
Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).
Google Scholar
Maria, I. et al. Metavalent bonding-mediated dual 6s2 lone pair expression leads to intrinsic lattice shearing in n-type TlBiSe2. J. Am. Chem. Soc. 145, 9292–9303 (2023).
Google Scholar
Sarkar, D. et al. Metavalent bonding in GeSe leads to high thermoelectric performance. Angew. Chem. Int. Ed. 60, 10350–10358 (2021).
Google Scholar
Yu, Y. et al. Doping by design: enhanced thermoelectric performance of GeSe alloys through metavalent bonding. Adv. Mater. 35, 2300893 (2023).
Google Scholar
Liu, Y. et al. Improved solubility in metavalently bonded solid leads to band alignment, ultralow thermal conductivity, and high thermoelectric performance in SnTe. Adv. Funct. Mater. 32, 2209980 (2022).
Google Scholar
Luu, S. D. N. & Vaqueiro, P. Layered oxychalcogenides: structural chemistry and thermoelectric properties. J. Materiomics 2, 131–140 (2016).
Google Scholar
Tippireddy, S., D S, P. K., Das, S. & Mallik, R. C. Oxychalcogenides as thermoelectric materials: an overview. ACS Appl. Energy Mater. 4, 2022–2040 (2021).
Google Scholar
Kageyama, H. et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 02838 (2018).
Google Scholar
Newnham, J. A. et al. Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs. J. Mater. Chem. A 11, 15739–15748 (2023).
Google Scholar
Mark, J. et al. Ultralow thermal conductivity in the mixed-anion solid solution Sn2SbS2−xSexI3. J. Mater. Chem. A 11, 10213–10221 (2023).
Google Scholar
Sato, N. et al. Bonding heterogeneity in mixed-anion compounds realizes ultralow lattice thermal conductivity. J. Mater. Chem. A 9, 22660–22669 (2021).
Google Scholar
Hodges, J. M. et al. Two-dimensional CsAg5Te3−xSx semiconductors: multi-anion chalcogenides with dynamic disorder and ultralow thermal conductivity. Chem. Mater. 30, 7245–7254 (2018).
Google Scholar
Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).
Google Scholar
Xia, K. et al. Short-range order in defective half-Heusler thermoelectric crystals. Energy Environ. Sci. 12, 1568 (2019).
Google Scholar
Chen, C. et al. Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2. Nat. Commun. 12, 5718 (2021).
Google Scholar
Zeuthen, C. M., Thorup, P. S., Roth, N. & Iversen, B. B. Reconciling crystallographic and physical property measurements on thermoelectric lead sulfide. J. Am. Chem. Soc. 141, 8146–8157 (2019).
Google Scholar
Sangiorgio, B. et al. Correlated local dipoles in PbTe. Phys. Rev. Mater. 2, 085402 (2018).
Google Scholar
Sarkar, D., Bhui, A., Maria, I., Dutta, M. & Biswas, K. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chem. Soc. Rev. 53, 6100–6149 (2024).
Google Scholar
Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).
Google Scholar
Roth, N. & Iversen, B. B. Solving the disordered structure of β-Cu2−xSe using the three-dimensional difference pair distribution function. Acta Crystallogr. A 75, 465–473 (2019).
Google Scholar
Xie, C., Tang, X. & Tan, G. Off-centering thermoelectrics. Next Mater. 1, 100048 (2023).
Google Scholar
Dutta, M. et al. Local symmetry breaking suppresses thermal conductivity in crystalline solids. Angew. Chem. Int. Ed. 61, e202200071 (2022).
Google Scholar
Bozin, E. S. et al. Local Sn dipolar-character displacements behind the low thermal conductivity in SnSe thermoelectric. Phys. Rev. Lett. 131, 036101 (2023).
Google Scholar
Shamoto, S. et al. Large displacement of germanium atoms in crystalline Ge2Sb2Te5. Appl. Phys. Lett. 86, 081904 (2005).
Google Scholar
Zhu, H. et al. Manipulating lattice distortion to promote average thermoelectric power factor in metavalently bonded AgBiSe2. Acta Mater. 259, 119260 (2023).
Google Scholar
Rathore, E. et al. Origin of ultralow thermal conductivity in n-type cubic bulk AgBiS2: soft Ag vibrations and local structural distortion induced by the Bi 6s2 lone pair. Chem. Mater. 31, 2106–2113 (2019).
Google Scholar
Hodges, J. M. et al. Chemical insights into PbSe−x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms. J. Am. Chem. Soc. 140, 18115–18123 (2018).
Google Scholar
Cai, S. et al. Discordant nature of Cd in PbSe: off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy Environ. Sci. 13, 200–211 (2020).
Google Scholar
Sales, B. C., Chakoumakos, Jin, R., Thompson, J. R. & Mandrus, D. Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys. Rev. B 63, 245113 (2001).
Google Scholar
Xie, H. et al. Hidden local symmetry breaking in silver diamondoid compounds is root cause of ultralow thermal conductivity. Adv. Mater. 34, 2202255 (2022).
Google Scholar
Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).
Google Scholar
Mineral commodity summaries 2019 U.S. Geological Survey (2019).
Nieroda, P. et al. Si–O–C amorphous coatings as a perspective protection against oxidation-caused degradation of Cu2S superionic thermoelectric materials. Ceram. Int. 47, 12992–12996 (2021).
Google Scholar
Gucci, F. et al. Oxidation protective hybrid coating for thermoelectric mater. Materials 12, 573 (2019).
Google Scholar
Bohra, A. et al. Study of thermal stability of Cu2Se thermoelectric material. AIP Conf. Proc. 1731, 110010 (2016).
Google Scholar
Brown, D. R., Day, T., Caillat, T. & Snyder, G. J. Chemical stability of (Ag,Cu)2Se: a historical overview. J. Electron. Mater. 42, 2014–2019 (2013).
Google Scholar
Yang, D. et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Adv. Mater. 32, 2003730 (2020).
Google Scholar
Qiu, P. et al. Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nat. Commun. 9, 2910 (2018).
Google Scholar
Zhao, Z. et al. Enhanced thermoelectric properties of MnxCu1.8S via tuning band structure and scattering multiscale phonons. J. Materiomics 7, 556–562 (2021).
Google Scholar
Mao, T. et al. Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions. Adv. Funct. Mater. 30, 1908315 (2019).
Google Scholar
Olvera, A. A. et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668–1676 (2017).
Google Scholar
Li, M. et al. Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes. Nano Energy 53, 993–1002 (2018).
Google Scholar
Nunna, R. et al. Ultrahigh thermoelectric performance in Cu2Se based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. 10, 1928–1935 (2017).
Google Scholar
Zhao, L. et al. Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy 41, 164–171 (2017).
Google Scholar
Bohra, A. K. et al. Stabilizing thermoelectric figure-of-merit of superionic conductor Cu2Se through W nanoinclusion. Phys. Status Solidi Rapid Res. Lett. 14, 2000102 (2020).
Google Scholar
Chen, X.-Q. et al. Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Metals 40, 2017–2025 (2021).
Google Scholar
Qiu, P. et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule 3, 1538–1548 (2019).
Google Scholar
Hu, H. et al. Highly stabilized and efficient thermoelectric copper selenide. Nat. Mater. 23, 527–534 (2024).
Google Scholar
Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).
Google Scholar
Maleki, R., Asadnia, M. & Razmjou, A. Artificial intelligence-based material discovery for clean energy future. Adv. Intell. Syst. 4, 2200073 (2022).
Google Scholar
Chen, C. et al. A critical review of machine learning of energy materials. Adv. Energy Mater. 10, 1903242 (2020).
Google Scholar
Pöhls, J.-H. et al. Experimental validation of high thermoelectric performance in RECuZnP2 predicted by high-throughput DFT calculations. Mater. Horiz. 8, 209–215 (2021).
Google Scholar
Wang, X. et al. A critical review of machine learning techniques on thermoelectric materials. J. Phys. Chem. Lett. 14, 1808–1822 (2023).
Google Scholar
Li, Y. et al. Large data set-driven machine learning models for accurate prediction of the thermoelectric figure of merit. ACS Appl. Mater. Interfaces 14, 55517–55527 (2022).
Google Scholar
Wang, T., Zhang, C., Snoussi, H. & Zhang, G. Machine learning approaches for thermoelectric materials research. Adv. Funct. Mater. 30, 1906041 (2020).
Google Scholar
Han, G., Sun, Y., Feng, Y., Lin, G. & Lu, N. Artificial intelligence guided thermoelectric materials design and discovery. Adv. Electron. Mater. 9, 2300042 (2023).
Google Scholar
Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).
Google Scholar
Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010).
Google Scholar
Chernyavsky, D., Brink, J. V. D., Park, G.-H., Nielsch, K. & Thomas, A. Sustainable thermoelectric materials predicted by machine learning. Adv. Theory Simul. 5, 2200351 (2022).
Google Scholar
Cheetham, A. K. & Seshadri, R. Artificial intelligence driving materials discovery? Perspective on the article: deep learning for materials discovery. Chem. Mater. 36, 3490–3495 (2024).
Google Scholar
Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).
Google Scholar
Li, J. et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2, 976–987 (2018).
Google Scholar
Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).
Google Scholar
Burdett, J. K. Chemical Bonding in Solids (Oxford Univ. Press, 1995).
Mecholsky, N. A., Al Rahal Al Orabi, R. & Fornari, M. in Inorganic Thermoelectric Materials: from Fundamental Concepts to Materials Design (ed. Powell, A. V.) Ch. 2 (Royal Society of Chemistry, 2021).
Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1995).
MacDonald, D. K. C. & Roy, S. K. Vibrational anharmonicity and lattice thermal properties. Phys. Rev. 97, 673–676 (1955).
Google Scholar
Gutiérrez Moreno, J. J., Cao, J., Fronzi, M. & Assadi, M. H. N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 9, 16 (2020).
Google Scholar
link