Determination of the effect of alkaline chemical modification using sodium hydroxide on the acoustic and thermal properties of bagasse fibers

0
Determination of the effect of alkaline chemical modification using sodium hydroxide on the acoustic and thermal properties of bagasse fibers
  • TG, Y. G. et al. Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. J. Compos. Sci. 7(6), 242 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sangmesh, B. et al. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 368, 130457 (2023).

    Article 

    Google Scholar 

  • Thapliyal, D. et al. Natural fibers composites: origin, importance, consumption pattern, and challenges. J. Compos. Sci. 7(12), 506 (2023).

    Article 
    CAS 

    Google Scholar 

  • Castañeda-Niño, J. P., Mina-Hernandez, J. H. & Solanilla-Duque, J. F. Effect of cellulose nanofibers and plantain Peel fibers on mechanical, thermal, physicochemical properties in bio-based composites storage time. Results Eng. 104185 (2025).

  • Ibrahim, F. H., Setiawan, R. A., Steven, S. & Mardiyati, Y. Towards sustainable composites: fabrication, characterization, and biodegradation of All-Cellulose composites (ACC) from Ramie (Boehmeria nivea) and Luffa (Luffa cylindrica). Results Eng. 104695 (2025).

  • Wirawan, W. A., Sabitah Ay, Choiron, M. A., Muslimin, M., Zulkarnain, A. & Budiarto, B. W. Effect of chemical treatment on the physical and thermal stabillity of Hibiscus Tiliaceus bark Fiber (HBF) as reinforcement in composite. Results Eng. 18, 101101 (2023).

    Article 
    CAS 

    Google Scholar 

  • Muslimin, M. et al. Enhancement of Sansevieria Trifasciata Laurentii Fiber properties with liquid smoke treatment. J. Nat. Fibers. 22(1), 2453482 (2025).

    Article 

    Google Scholar 

  • Shafiee, S. A., Imran, S. N. M. & Zaki, Z. Z. M. An approach utilizing varied sugarcane Bagasse densities as biobased acoustic panels for educational institutions. Int. J. Bus. Technol. Manage. 6(S1), 52–62 (2024).

    Google Scholar 

  • Khosro, S. K. et al. Acoustical, thermal, and mechanical performance of Typha Latifolia fiber panels: experimental evaluation and modeling for sustainable Building applications. J. Building Eng. 99, 111579 (2025).

    Article 

    Google Scholar 

  • Srisawas, M., Kerdkaew, T. & Chanlert, P. From invasive species to bio-based composites: utilizing water hyacinth for sound absorption and insulation. Ind. Crops Prod. 220, 119242 (2024).

    Article 
    CAS 

    Google Scholar 

  • Mohammadi, M. et al. Recent progress in natural fiber reinforced composite as sound absorber material. J. Building Eng. 108514 (2024).

  • Hemmati, N. et al. Acoustic and thermal performance of wood strands-rock wool-cement composite boards as eco-friendly construction materials. Constr. Build. Mater. 445, 137935 (2024).

    Article 

    Google Scholar 

  • Wirawan, W. A., Choiron, M. A., Siswanto, E. & Widodo, T. D. Morphology, structure, and mechanical properties of new natural cellulose fiber reinforcement from Waru (Hibiscus tiliaceus) bark. J. Nat. Fibers. 19(15), 12385–12397 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mizoue, T., Miyamoto, T. & Shimizu, T. Combined effect of smoking and occupational exposure to noise on hearing loss in steel factory workers. Occup. Environ. Med. 60(1), 56–59 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chraif, M. The effects of radio noise in multiple time reaction tasks for young students. Procedia-Social Behav. Sci. 33, 1057–1062 (2012).

    Article 

    Google Scholar 

  • Alimohamadi, I., Soltani, R., Azkhosh, M., Gohari, M. & Moosavi, B. Study of role extroversion of caused by traffic noise on mental function of the students. Iran. Occup. Health. 7(4), 7–0 (2011).

    Google Scholar 

  • Aliabadi, M., Mahdavi, N., Farhadian, M. & Shafie Motlagh, M. Evaluation of noise pollution and acoustic comfort in the classrooms of Hamadan university of medical sciences in 2012. Iran. J. Ergon. 1(2), 19–27 (2013).

    Google Scholar 

  • Bellelli, F., Arina, R. & Avallone, F. On the impact of operating condition and testing environment on the noise sources in an industrial engine cooling fan. Appl. Acoust. 227, 110252 (2025).

    Article 

    Google Scholar 

  • Arjunan, A., Baroutaji, A., Robinson, J., Vance, A. & Arafat, A. Acoustic metamaterials for sound absorption and insulation in buildings. Build. Environ. 11250 (2024).

  • Clark, C. & Stansfeld, S. A. The effect of transportation noise on health and cognitive development: A review of recent evidence. Int. J. Comp. Psychol. ;20(2) (2007).

  • Hahad, O. et al. Noise and mental health: evidence, mechanisms, and consequences. J. Expo. Sci. Environ. Epidemiol. 1–8 (2024).

  • Bluhm, G., Nordling, E. & Berglind, N. Road traffic noise and annoyance-An increasing environmental health problem. Noise Health. 6(24), 43–49 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Ghanbarzadeh Alamdari, Z., Khavanin, A. & Kokabi, M. Manufacturing sound absorber based on combined recycling of polyethylene trephetalat and polystyrene at low and median frequencies. Bimon. Audiology-Tehran Univ. Med. Sci. 17(1), 1–10 (2008).

    Google Scholar 

  • Ersoy, S. & Küçük, H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Appl. Acoust. 70(1), 215–220 (2009).

    Article 

    Google Scholar 

  • Chis, T. V. et al. Integrated noise management strategies in industrial environments: A framework for occupational safety, health, and productivity. Sustainability 17(3), 1181 (2025).

    Article 

    Google Scholar 

  • Zhao, X-D., Yu, Y-J. & Wu, Y-J. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl. Acoust. 114, 92–98 (2016).

    Article 

    Google Scholar 

  • Bhingare, N. H., Prakash, S. & Jatti, V. S. A review on natural and waste material composite as acoustic material. Polym. Test. 80, 106142 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chenzhi, C. & Mak, C. M. Noise Attenuation capacity of a Helmholtz resonator. Adv. Eng. Softw. 116, 60–66 (2018).

    Article 

    Google Scholar 

  • Lv, L. et al. Effect of micro-slit plate structure on the sound absorption properties of discarded corn cob husk fiber. Fibers Polym. 16, 1562–1567 (2015).

    Article 

    Google Scholar 

  • Cobo, P. & de Espinosa, F. M. Proposal of cheap microperforated panel absorbers manufactured by infiltration. Appl. Acoust. 74(9), 1069–1075 (2013).

    Article 

    Google Scholar 

  • Arenas, J. P. & Ugarte, F. A note on a circular panel sound absorber with an elastic boundary condition. Appl. Acoust. 114, 10–17 (2016).

    Article 

    Google Scholar 

  • Cao, L., Fu, Q., Si, Y., Ding, B. & Yu, J. Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018).

    Article 
    ADS 

    Google Scholar 

  • Xinzhao, X., Guoming, L., Dongyan, L., Guoxin, S. & Rui, Y. Electrically conductive graphene-coated polyurethane foam and its epoxy composites. Compos. Commun. 7, 1–6 (2018).

    Article 

    Google Scholar 

  • Berardi, U. & Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 115, 131–138 (2017).

    Article 

    Google Scholar 

  • Sarja, A. Editor Integrated Life Cycle Design of Materials and Structures (CIB World Congress, 1998).

  • Ashour, T., Georg, H. & Wu, W. Performance of straw Bale wall: A case of study. Energy Build. 43(8), 1960–1967 (2011).

    Article 

    Google Scholar 

  • Cascone, S. M., Cascone, S. & Vitale, M. Building insulating materials from agricultural by-products: A review. Sustainability in Energy and Buildings: Proceedings of SEB 2019 309–318 (2020).

  • Martellotta, F., Cannavale, A., De Matteis, V. & Ayr, U. Sustainable sound absorbers obtained from Olive pruning wastes and Chitosan binder. Appl. Acoust. 141, 71–78 (2018).

    Article 

    Google Scholar 

  • Oldham, D. J., Egan, C. A. & Cookson, R. D. Sustainable acoustic absorbers from the biomass. Appl. Acoust. 72(6), 350–363 (2011).

    Article 

    Google Scholar 

  • Glé, P., Gourdon, E. & Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 72(5), 249–259 (2011).

    Article 

    Google Scholar 

  • Dénes, T-O. et al. Analysis of sheep wool-based composites for Building insulation. Polymers 14(10), 2109 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalia, S., Kaith, B. & Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym. Eng. Sci. 49(7), 1253–1272 (2009).

    Article 
    CAS 

    Google Scholar 

  • Samaei, S. E., Asilian Mahabadi, H., Mousavi, S. M., Khavanin, A. & Faridan, M. Effect of alkali treatment on diameter and tensile properties of Yucca Gloriosa fiber using response surface methodology. J. Nat. Fibers. 19(7), 2429–2442 (2022).

    Article 
    CAS 

    Google Scholar 

  • Samaei, S. E., Mahabadi, H. A., Mousavi, S. M., Khavanin, A. & Faridan, M. Optimization and sound absorption modeling of Yucca Gloriosa natural fiber composites. Iran. Occup. Health. 18(1), 1–17 (2021).

    Article 

    Google Scholar 

  • Sanjuan, R., Anzaldo, J., Vargas, J., Turrado, J. & Patt, R. Morphological and chemical composition of pith and fibers from Mexican sugarcane Bagasse. Holz Als Roh-und Werkst. 59, 447–450 (2001).

    Article 
    CAS 

    Google Scholar 

  • Muslimin, M. et al. Effect of liquid smoke treatment on banana stem fibers as composite reinforcement. SAINSTECH NUSANTARA. 2(1), 1–11 (2025).

    Article 

    Google Scholar 

  • Sulistyo, A. & Wirawan, W. Evaluation of tensile strength and flexural strength of GFRP composites in different types of matrix polymers. J. Achievements Mater. Manuf. Eng. 123(2), 49–57 (2024).

    Google Scholar 

  • Xie, Z. K., Ikeda, T., Okuda, Y. & Nakajima, H. Characteristics of sound absorption in lotus-type porous magnesium. Jpn. J. Appl. Phys. 43(10R), 7315 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abd ALRahman, L., Raja, R. I., Rahman, R. A. & Ibrahim, Z. Comparison of acoustic characteristics of date palm fibre and oil palm fibre. Res. J. Appl. Sci. Eng. Technol. 7(8), 1656–1661 (2014).

    Article 

    Google Scholar 

  • Tămaş-Gavrea, D-R. et al. A novel acoustic sandwich panel based on sheep wool. Coatings 10(2), 148 (2020).

    Article 

    Google Scholar 

  • Asdrubali, F., D’Alessandro, F. & Schiavoni, S. A review of unconventional sustainable Building insulation materials. Sustainable Mater. Technol. 4, 1–17 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gaur, M., Muzammil, M. & Khan, A. A. Bagasse: A replacement of glass wool as an acoustic material. Ergonomics in Caring for People: Proceedings of the International Conference on Humanizing Work and Work Environment 2015 (Springer, 2018).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *