Determination of the effect of alkaline chemical modification using sodium hydroxide on the acoustic and thermal properties of bagasse fibers

TG, Y. G. et al. Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. J. Compos. Sci. 7(6), 242 (2023).
Google Scholar
Sangmesh, B. et al. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 368, 130457 (2023).
Google Scholar
Thapliyal, D. et al. Natural fibers composites: origin, importance, consumption pattern, and challenges. J. Compos. Sci. 7(12), 506 (2023).
Google Scholar
Castañeda-Niño, J. P., Mina-Hernandez, J. H. & Solanilla-Duque, J. F. Effect of cellulose nanofibers and plantain Peel fibers on mechanical, thermal, physicochemical properties in bio-based composites storage time. Results Eng. 104185 (2025).
Ibrahim, F. H., Setiawan, R. A., Steven, S. & Mardiyati, Y. Towards sustainable composites: fabrication, characterization, and biodegradation of All-Cellulose composites (ACC) from Ramie (Boehmeria nivea) and Luffa (Luffa cylindrica). Results Eng. 104695 (2025).
Wirawan, W. A., Sabitah Ay, Choiron, M. A., Muslimin, M., Zulkarnain, A. & Budiarto, B. W. Effect of chemical treatment on the physical and thermal stabillity of Hibiscus Tiliaceus bark Fiber (HBF) as reinforcement in composite. Results Eng. 18, 101101 (2023).
Google Scholar
Muslimin, M. et al. Enhancement of Sansevieria Trifasciata Laurentii Fiber properties with liquid smoke treatment. J. Nat. Fibers. 22(1), 2453482 (2025).
Google Scholar
Shafiee, S. A., Imran, S. N. M. & Zaki, Z. Z. M. An approach utilizing varied sugarcane Bagasse densities as biobased acoustic panels for educational institutions. Int. J. Bus. Technol. Manage. 6(S1), 52–62 (2024).
Khosro, S. K. et al. Acoustical, thermal, and mechanical performance of Typha Latifolia fiber panels: experimental evaluation and modeling for sustainable Building applications. J. Building Eng. 99, 111579 (2025).
Google Scholar
Srisawas, M., Kerdkaew, T. & Chanlert, P. From invasive species to bio-based composites: utilizing water hyacinth for sound absorption and insulation. Ind. Crops Prod. 220, 119242 (2024).
Google Scholar
Mohammadi, M. et al. Recent progress in natural fiber reinforced composite as sound absorber material. J. Building Eng. 108514 (2024).
Hemmati, N. et al. Acoustic and thermal performance of wood strands-rock wool-cement composite boards as eco-friendly construction materials. Constr. Build. Mater. 445, 137935 (2024).
Google Scholar
Wirawan, W. A., Choiron, M. A., Siswanto, E. & Widodo, T. D. Morphology, structure, and mechanical properties of new natural cellulose fiber reinforcement from Waru (Hibiscus tiliaceus) bark. J. Nat. Fibers. 19(15), 12385–12397 (2022).
Google Scholar
Mizoue, T., Miyamoto, T. & Shimizu, T. Combined effect of smoking and occupational exposure to noise on hearing loss in steel factory workers. Occup. Environ. Med. 60(1), 56–59 (2003).
Google Scholar
Chraif, M. The effects of radio noise in multiple time reaction tasks for young students. Procedia-Social Behav. Sci. 33, 1057–1062 (2012).
Google Scholar
Alimohamadi, I., Soltani, R., Azkhosh, M., Gohari, M. & Moosavi, B. Study of role extroversion of caused by traffic noise on mental function of the students. Iran. Occup. Health. 7(4), 7–0 (2011).
Aliabadi, M., Mahdavi, N., Farhadian, M. & Shafie Motlagh, M. Evaluation of noise pollution and acoustic comfort in the classrooms of Hamadan university of medical sciences in 2012. Iran. J. Ergon. 1(2), 19–27 (2013).
Bellelli, F., Arina, R. & Avallone, F. On the impact of operating condition and testing environment on the noise sources in an industrial engine cooling fan. Appl. Acoust. 227, 110252 (2025).
Google Scholar
Arjunan, A., Baroutaji, A., Robinson, J., Vance, A. & Arafat, A. Acoustic metamaterials for sound absorption and insulation in buildings. Build. Environ. 11250 (2024).
Clark, C. & Stansfeld, S. A. The effect of transportation noise on health and cognitive development: A review of recent evidence. Int. J. Comp. Psychol. ;20(2) (2007).
Hahad, O. et al. Noise and mental health: evidence, mechanisms, and consequences. J. Expo. Sci. Environ. Epidemiol. 1–8 (2024).
Bluhm, G., Nordling, E. & Berglind, N. Road traffic noise and annoyance-An increasing environmental health problem. Noise Health. 6(24), 43–49 (2004).
Google Scholar
Ghanbarzadeh Alamdari, Z., Khavanin, A. & Kokabi, M. Manufacturing sound absorber based on combined recycling of polyethylene trephetalat and polystyrene at low and median frequencies. Bimon. Audiology-Tehran Univ. Med. Sci. 17(1), 1–10 (2008).
Ersoy, S. & Küçük, H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Appl. Acoust. 70(1), 215–220 (2009).
Google Scholar
Chis, T. V. et al. Integrated noise management strategies in industrial environments: A framework for occupational safety, health, and productivity. Sustainability 17(3), 1181 (2025).
Google Scholar
Zhao, X-D., Yu, Y-J. & Wu, Y-J. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl. Acoust. 114, 92–98 (2016).
Google Scholar
Bhingare, N. H., Prakash, S. & Jatti, V. S. A review on natural and waste material composite as acoustic material. Polym. Test. 80, 106142 (2019).
Google Scholar
Chenzhi, C. & Mak, C. M. Noise Attenuation capacity of a Helmholtz resonator. Adv. Eng. Softw. 116, 60–66 (2018).
Google Scholar
Lv, L. et al. Effect of micro-slit plate structure on the sound absorption properties of discarded corn cob husk fiber. Fibers Polym. 16, 1562–1567 (2015).
Google Scholar
Cobo, P. & de Espinosa, F. M. Proposal of cheap microperforated panel absorbers manufactured by infiltration. Appl. Acoust. 74(9), 1069–1075 (2013).
Google Scholar
Arenas, J. P. & Ugarte, F. A note on a circular panel sound absorber with an elastic boundary condition. Appl. Acoust. 114, 10–17 (2016).
Google Scholar
Cao, L., Fu, Q., Si, Y., Ding, B. & Yu, J. Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018).
Google Scholar
Xinzhao, X., Guoming, L., Dongyan, L., Guoxin, S. & Rui, Y. Electrically conductive graphene-coated polyurethane foam and its epoxy composites. Compos. Commun. 7, 1–6 (2018).
Google Scholar
Berardi, U. & Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 115, 131–138 (2017).
Google Scholar
Sarja, A. Editor Integrated Life Cycle Design of Materials and Structures (CIB World Congress, 1998).
Ashour, T., Georg, H. & Wu, W. Performance of straw Bale wall: A case of study. Energy Build. 43(8), 1960–1967 (2011).
Google Scholar
Cascone, S. M., Cascone, S. & Vitale, M. Building insulating materials from agricultural by-products: A review. Sustainability in Energy and Buildings: Proceedings of SEB 2019 309–318 (2020).
Martellotta, F., Cannavale, A., De Matteis, V. & Ayr, U. Sustainable sound absorbers obtained from Olive pruning wastes and Chitosan binder. Appl. Acoust. 141, 71–78 (2018).
Google Scholar
Oldham, D. J., Egan, C. A. & Cookson, R. D. Sustainable acoustic absorbers from the biomass. Appl. Acoust. 72(6), 350–363 (2011).
Google Scholar
Glé, P., Gourdon, E. & Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 72(5), 249–259 (2011).
Google Scholar
Dénes, T-O. et al. Analysis of sheep wool-based composites for Building insulation. Polymers 14(10), 2109 (2022).
Google Scholar
Kalia, S., Kaith, B. & Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym. Eng. Sci. 49(7), 1253–1272 (2009).
Google Scholar
Samaei, S. E., Asilian Mahabadi, H., Mousavi, S. M., Khavanin, A. & Faridan, M. Effect of alkali treatment on diameter and tensile properties of Yucca Gloriosa fiber using response surface methodology. J. Nat. Fibers. 19(7), 2429–2442 (2022).
Google Scholar
Samaei, S. E., Mahabadi, H. A., Mousavi, S. M., Khavanin, A. & Faridan, M. Optimization and sound absorption modeling of Yucca Gloriosa natural fiber composites. Iran. Occup. Health. 18(1), 1–17 (2021).
Google Scholar
Sanjuan, R., Anzaldo, J., Vargas, J., Turrado, J. & Patt, R. Morphological and chemical composition of pith and fibers from Mexican sugarcane Bagasse. Holz Als Roh-und Werkst. 59, 447–450 (2001).
Google Scholar
Muslimin, M. et al. Effect of liquid smoke treatment on banana stem fibers as composite reinforcement. SAINSTECH NUSANTARA. 2(1), 1–11 (2025).
Google Scholar
Sulistyo, A. & Wirawan, W. Evaluation of tensile strength and flexural strength of GFRP composites in different types of matrix polymers. J. Achievements Mater. Manuf. Eng. 123(2), 49–57 (2024).
Xie, Z. K., Ikeda, T., Okuda, Y. & Nakajima, H. Characteristics of sound absorption in lotus-type porous magnesium. Jpn. J. Appl. Phys. 43(10R), 7315 (2004).
Google Scholar
Abd ALRahman, L., Raja, R. I., Rahman, R. A. & Ibrahim, Z. Comparison of acoustic characteristics of date palm fibre and oil palm fibre. Res. J. Appl. Sci. Eng. Technol. 7(8), 1656–1661 (2014).
Google Scholar
Tămaş-Gavrea, D-R. et al. A novel acoustic sandwich panel based on sheep wool. Coatings 10(2), 148 (2020).
Google Scholar
Asdrubali, F., D’Alessandro, F. & Schiavoni, S. A review of unconventional sustainable Building insulation materials. Sustainable Mater. Technol. 4, 1–17 (2015).
Google Scholar
Gaur, M., Muzammil, M. & Khan, A. A. Bagasse: A replacement of glass wool as an acoustic material. Ergonomics in Caring for People: Proceedings of the International Conference on Humanizing Work and Work Environment 2015 (Springer, 2018).
link