Design and synthesis, and experimental-computational analysis of an acetic acid-functionalized zinc tetrapyridinoporphyrazine catalyst for synthesizing acridine and quinoline derivatives

0
Design and synthesis, and experimental-computational analysis of an acetic acid-functionalized zinc tetrapyridinoporphyrazine catalyst for synthesizing acridine and quinoline derivatives
  • Kharisov, B. I., Blanco-Jerez, L. M. & García-Luna, A. Direct electrochemical synthesis of metal complexes. Lanthanide phthalocyanines: optimization of the synthesis. Revista De La. Sociedad QuíMica De MéXico. 43 (2), 50–53 (1999). http://www.redalyc.org/pdf/475/47543103.pdf

    CAS 

    Google Scholar 

  • Linstead, R. P. 212. Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. (Resumed) 1934, 1016–1017. (1934).

  • Linstead, R. P. & Lowe, A. R. 214. Phthalocyanines. Part III. Preliminary experiments on the Preparation of phthalocyanines from phthalonitrile. J. Chem. Soc. (Resumed) 1934, 1022–1027. (1934).

  • Anderson, J. S., Bradbrook, E. F., Cook, A. H. & Linstead, R. P. Phthalocyanines and associated compounds. Part XIII. Absorption spectra. J Chem. Soc 1938, 1151–1156 (1938).

  • Salah, A., Fatma, H., Hamdi, Z. Y., Salwa, A. H. & Atef, A. S. S, D., Various characteristics and catalytic performance of iron (II) phthalocyanine immobilized onto titania- and vanadia-pillared bentonite clay in in situ polymerization of Methyl methacrylate: an attempt to synthesize novel polymer/iron phthalocyanine/pillared clay nanocomposites. Journal Mol. Catal. A: Chemical 332 (1–2), 93 – 10 (2010).

  • Hamad, A. E. R. M. A. E. A., Soliman, H. A. & Elhady, A. M. M. OM. Boosting the catalytic performance of manganese (III)-porphyrin complex MnTSPP for facile one-pot green synthesis of 1,4-dihydropyridine derivatives under mild conditions. Appl Organomet Chem 35, e6238. (2021).

  • Sobhani, S., Safaei, E., Hasaninejad, A. & Rezazadeh, S. An eco-friendly procedure for the efficient synthesis of bis(indolyl)methanes in aqueous media. J. Organomet. Chem. 694 (18), 3027–3031. (2009).

    Article 
    CAS 

    Google Scholar 

  • Meunier, B. & Sorokin, A. Oxidation of pollutants catalyzed by metallophthalocyanines. Acc. Chem. Res. 30 (11), 470–476. (1997).

    Article 
    CAS 

    Google Scholar 

  • Rajagopal, G., Kim, S. S. & George, S. C. Aluminum phthalocyanine: an active and simple catalyst for cyanosilylation of aldehydes. Appl. Organomet. Chem. 21 (3), 198–202. (2007).

    Article 
    CAS 

    Google Scholar 

  • Sharma, V. B., Jain, S. L. & Sain, B. An efficient method for the olefination of aldehydes with Ethyl Diazoacetate using iron (II) phthalocyanine as catalyst. Catal. Lett. 98 (2–3), 141–143. (2004).

    Article 
    CAS 

    Google Scholar 

  • Dong, Z. & Scammells, P. J. New methodology for the N-Demethylation of opiate alkaloids. J. Org. Chem. 72 (26), 9881–9885. (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mbambisa, G., Nombona, N. & Nyokong, T. The formation of self-assembled monolayers of thiophthalocyanine complexes of titanium, vanadium and manganese and their use in l-cysteine electrocatalysis. Microchem. J. 93 (1), 60–66 (2009).

    Article 
    CAS 

    Google Scholar 

  • Özçeşmeci, I., Yerli, Y., Okur, A. & Gül, I. Synthesis and EPR studies of a near infrared absorbing tetrakis(2-naphthoxy) Vanadylphthalocyanine. Inorg. Chem. Commun. 12 (7), 625–627 (2009).

    Article 

    Google Scholar 

  • Smith, T. D., Livorness, J., Taylor, H., Pilbrow, J. R. & Sinclair, G. R. Physico-chemical study of copper (II) and Cobalt (II) chelates of tetra-2,3-pyridinoporphyrazine. J. Chem. Soc. Dalton Trans. 7, 1391. (1983).

    Article 

    Google Scholar 

  • Moser, F. H., Thomas, A. L. & Phthalocyanines A.C.S. Monograph 157 (Reinhold Publishing Corp., 1963).

  • Lever, A. The phthalocyanines. In Advances in Inorganic Chemistry and Radiochemistry 27–114 (1965). https://doi.org/10.1016/s0065-2792(08)60314-3.

  • Jahnke, H., Schoenborn, M. & Zimmermann, G. ChemInForm abstract: organic dyestuffs as catalysts for fuel cells. Chemischer Informationsdienst. 7 (16), 133–181. (1976).

    Article 

    Google Scholar 

  • Mbambisa, G. & Nyokong, T. Synthesis and electrochemical characterisation of a near infrared absorbing Oxo vanadium (IV) octapentylthio-phthalocyanine. Polyhedron 27 (13), 2799–2804. (2008).

    Article 
    CAS 

    Google Scholar 

  • Snow, A. W. in: Kadish K.M, (eds Smith, K. M. & Guilard, R.) Porphyrin Handbook, Phthalocyanines: Properties and Materials. 17, Academic, New York, (2003).

    Google Scholar 

  • Ozawa, K. & Ishii, K. Photophysical and magnetic properties of magnetic silica gel-supported silicon phthalocyanine complexes. Phys. Chem. Chem. Phys. 11 (7), 1019–1022. (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • El-Remaily, A. A., Abu-Dief, M. A. E., El-Khatib, R. M. & A. M., and A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organometal Chem. 30, 1022–1029. (2016).

    Article 
    CAS 

    Google Scholar 

  • Gong, W., Liu, Y., Li, H. & Cui, Y. Metal-organic frameworks as solid Brønsted acid catalysts for advanced organic transformations. Coord. Chem. Rev. 420, 213400 (2020).

    Article 
    CAS 

    Google Scholar 

  • Moosavi-Zare, A. R. et al. Synthesis and characterization of acetic acid functionalized Poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. A-chemical. 425, 217–228 (2016).

    Article 
    CAS 

    Google Scholar 

  • Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. E. A. A. A. & Abdel-Ghany, H. Synthesis of pyrimidine, dihydropyrimidinone, and dihydroimidazole derivatives under free solvent conditions and their antibacterial evaluation. J. Heterocycl. Chem. 51, 1202–1209. (2014).

    Article 
    CAS 

    Google Scholar 

  • Verma, S., Verma, S., Agrwal, A. & Kasana, V. Tetrabutylammonium valinate ionic liquid grafted Nano-SiO2: A novel heterogeneous and reusable catalytic system for the synthesis of Naphthopyran derivatives under Solvent-Less. Condition Polycycl. Aromatic Compd. 44 (4), 2442–2457. (2023).

    Article 
    CAS 

    Google Scholar 

  • Khazaei, A., Sarmasti, N., Seyf, J. Y. & Tavasoli, M. Synthesis of hexahydroquinoline (HHQ) derivatives using ZrOCl₂·8H₂O as a potential green catalyst and optimization of reaction conditions using design of experiment (DOE). RSC Adv. 5 (123), 101268–101275 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hantzsch, A. Ueber die synthese pyridinartiger verbindungen Aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem. 215 (1), 1–82 (1882).

    Article 

    Google Scholar 

  • Moeinimehr, M., Safaiee, M. & Taherpour, A. A. Synthesis and characterization of a new zwitterionic phthalocyanine for efficient synthesis of polyhydroquinoline and Chromene derivatives. ChemistrySelect 9 (27), 20240–20245 (2024).

    Article 

    Google Scholar 

  • Akbarpoor, T., Khazaei, A., Seyf, J. Y., Sarmasti, N. & Gilan, M. M. One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation. Res. Chem. Intermed. 46, 1539–1554 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ahmed, E. A., Soliman, A. M. M., Ali, A. M. & Ali El-Remaily Mahmoud Abd El Aleem Ali. Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium. Appl. Organomet. Chem. 35, e6197. (2021).

    Article 
    CAS 

    Google Scholar 

  • Agrwal, A. et al. CoONPs@CoCh – A recyclable catalyst for One-pot synthesis of triarylpyridines. Org. Prep. Proced. Int. 55 (3), 243–250. (2022).

    Article 
    CAS 

    Google Scholar 

  • Hussain-Khil, N., Ghorbani-Choghamarani, A. & Mohammadi, M. A new silver coordination polymer based on 4, 6-diamino-2-pyrimidinethiol: synthesis, characterization and catalytic application in asymmetric Hantzsch synthesis of polyhydroquinolines. Int. J. Sci. Rep. 11 (1), 15657–15663 (2021).

    CAS 

    Google Scholar 

  • Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. Rapidly and highly yielded synthesis of pyrimidine, dihydropyrimidinone, and Triazino[2,1-b]quinazolin-6-ones derivatives. J. Heterocycl. Chem. 50 (6), 1425–1430. (2013).

    Article 
    CAS 

    Google Scholar 

  • Ghorbani-Choghamarani, A., Aghavandi, H., Khanmohammadi-Sarabi, F. & Zolfigol, M. A. Simple synthesis of the novel Cu-Cya-Mof: A Metal-Organic framework as a green and recoverable catalyst for the asymmetric Hantzsch synthesis of polyhydroquinoline derivatives. Available SSRN 4258056 (2022).

  • Agrwal, A. & Kasana, V. [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction. J. Chem. Sci. 132 (67). (2020).

  • Sam, M., Dekamin, M. G. & Alirezvani, Z. Dendrons containing boric acid and 1, 3, 5-tris (2-hydroxyethyl) isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci. Rep. 11 (1), 2399–2405 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goni, L. K., Mazumder, J., Tripathy, M. A., Quraishi, M. A. & D. B. and Acridine and its derivatives: synthesis, biological, and anticorrosion properties. Materials 15 (21), 7560–7565 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wainwright, M. Acridine a neglected antibacterial chromophore. J. Antimicrob. Chemother. 47 (1), 1–13 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, R., Kaur, M., Kumari, M. & Acridine A versatile heterocyclic nucleus. Acta Pol. Pharm. 69 (1), 3–9 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, B., Li, X., Li, B., Gao, C. & Jiang, Y. Acridine and its derivatives: a patent review (2009–2013). Expert Opin. Ther. Pat. 24 (6), 647–664 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, H. H. et al. Hypoxia-selective antitumor agents. 13. Effects of acridine substitution on the hypoxia-selective cytotoxicity and metabolic reduction of the bis-bioreductive agent Nitracrine N-oxide. J. Med. Chem. 39 (13), 2508–2517 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Aquino, R. A. N., Modolo, L. V., Alves, R. B. & de Fátima Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org. Biomol. Chem 11 (48), 8395–8409 (2013).

  • Bernthsen, A. Die acridine. Justus Liebigs Ann. Chem. 224 (1–2), 1–56 (1884).

    Article 

    Google Scholar 

  • Zolfigol, M. A., Karimi, F., Yarie, M. & Torabi, M. Catalytic application of sulfonic acid-functionalized titana‐coated magnetic nanoparticles for the Preparation of 1, 8‐dioxodecahydroacridines and 2, 4, 6‐triarylpyridines via anomeric‐based oxidation. Appl. Organometal Chem. 32 (2), 4063–4068 (2018).

    Article 

    Google Scholar 

  • Aher, D. S., Khillare, K. R. & Shankarwar, S. G. Incorporation of Keggin-based h₃pw₇mo₅o₄₀ into bentonite: synthesis, characterization and catalytic applications. RSC Adv. 11 (19), 11244–11254 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Honari, M., Kiasat, A. R., Sanaeishoar, H. & Mohammadi, M. K. Fe3O4@ nSiO2@ mSiO2/DBU: a novel and effective basic magnetic nanocatalyst in the multicomponent one pot synthesis of polyhydroacridines and polyhydroquinolines. PACs 42 (4), 1728–1746 (2022).

    CAS 

    Google Scholar 

  • Aute, D., Parhad, A., Vikhe, V., Uphad, B. & Gadhave, A. Aluminized polyborate catalyzed efficient solvent-free synthesis of 1, 8-dioxo-decahydroacridines via Hantzsch condensation. Curr. Chem. Lett. 13 (2), 417–424 (2024).

    Article 

    Google Scholar 

  • Sardar, B., Jamatia, R., Pal, D. & Srimani, D. Multicomponent dehydrogenative synthesis of acridine-1, 8‐diones catalyzed by Ru‐doped hydrotalcite. Asian J. Org. Chem. 10 (8), 2195–2204 (2021).

    Article 
    CAS 

    Google Scholar 

  • Safaiee, M., Moeinimehr, M. & Zolfigol, M. A. Pyridiniumporphyrazinato oxo-vanadium tribromomethanide as a new source of Br + catalyst for the chemo and homoselective oxidation of sulfides and benzylic alcohols. Polyhedron 170, 138–150 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dashteh, M., Safaiee, M., Baghery, S. & Zolfigol, M. A. Application of Cobalt phthalocyanine as a nanostructured catalyst in the synthesis of biological henna-based compounds. Appl. Organomet. Chem. 33, e4690 (2018).

    Article 

    Google Scholar 

  • Zolfigol, M. A., Safaiee, M. & Bahrami-Nejada, N. Dendrimeric magnetic nanoparticle cores with Co-phthalocyanine tags and their application in the synthesis of tetrahydrobenzo [b] Pyran derivatives. New. J. Chem. 40, 5071–5079 (2016).

    Article 
    CAS 

    Google Scholar 

  • Safaiee, M., Zolfigol, M. A., Afsharnadery, F. & Baghery, S. Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nano particles: as an efficient catalyst for the synthesis of 3, 4-dihydropyrano [c] Chromenes. RSC Adv. 5, 102340–102349 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dashteh, M. et al. Synthesis of Cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tags as an efficient catalyst and its application for the synthesis of bicyclic ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. RSC Adv. 10, 27824–27834 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dashteh, M. et al. Design and synthesis of nickel tetra-2,3‐pyridiniumporphyrazinato trinitromethanide as an influential catalyst and its application in the synthesis of 1,2,4-triazolo based compounds. J. Phys. Chem. Solids. 160, 110322 (2020).

    Article 

    Google Scholar 

  • Moeinimehr, M., Safaiee, M., Zolfigol, M. A. & Taherpour, A. A. Synthesis and application of nano vanadium-oxo Pyridiniumporphyrazinato sulfonic acid for synthesizing pyrazole and dihydropyrano[2,3]pyrazole derivatives. ChemistrySelect 7, e202200849 (2022).

    Article 
    CAS 

    Google Scholar 

  • Moeinimehr, M., Safaiee, M. & Taherpour, A. A. First synthesis of the Pyridiniumporphyrazinato Oxo-Vanadium sulfonic acid nitrate as an efficient reagent for selective nitration of aromatic derivatives by in situ generation of NO2 and the corresponding theoretical studies. J. Mol. Struct. 1325, 140935. (2025).

    Article 
    CAS 

    Google Scholar 

  • Frisch, M. et al. Gaussian 09 Revision A. 1, 2009 (Vol. Gaussian Inc, 2009).

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 34, 1429–1437 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Momeni, S. & GhorbaniVaghei, R. An efficient, green and solvent-free protocol for one-pot synthesis of 1, 4-dihydropyridine derivatives using a new recyclable heterogeneous catalyst. J. Mol. Struct. 1288, 13575–13579 (2023).

    Article 

    Google Scholar 

  • Zhang, Q., Ma, X. M., Wei, H. X., Zhao, X. & Luo, J. Covalently anchored tertiary amine functionalized ionic liquid on silica coated nano-Fe3O4 as a novel, efficient and magnetically recoverable catalyst for the unsymmetrical Hantzsch reaction and Knoevenagel condensation. RSC Adv. 7 (85), 53861–53870 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ghorbani, M., Noura, S., Oftadeh, M. & Zolfigol, M. A. Novel ionic liquid [2-Eim] HSO4 as a dual catalytic-solvent system for Preparation of hexahydroquinolines under green conditions. RSC Adv. 5 (68), 55303–55312 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fatma, S., Ankit, P., Singh, M., Singh, S. B. & Singh, J. Nucleophilic, heterocyclic, carbene-catalyzed, solvent-free, one-pot synthesis of polyhydroquinolines via multicomponent Hantzsch reaction: an efficient and ecofriendly approach. Synth. Commun. 44 (12), 1810–1816 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mohammadi, M. & Ghorbani-Choghamarani, A. Synthesis and characterization of novel hercynite@ sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2, 3-dihydroquinazolin-4 (1 H)-ones. RSC Adv. 12 (5), 2770–2787 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. An efficient, catalyst-and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64 (3), 536–542 (2008).

    Article 
    CAS 

    Google Scholar 

  • Fan, X., Li, Y., Zhang, X., Qu, G. & Wang, J. An efficient and green Preparation of 9-arylacridine‐1, 8‐dione derivatives. Heteroat. Chemistry: Int. J. Main Group. Met. Chem. 18 (7), 786–790 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kiani, M. & Mohammadipour, M. Fe3O4@ SiO2–MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1, 8-dioxo-decahydroacridine derivatives. RSC Adv. 7 (2), 997–1007 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chavan, P. N., Pansare, D. N. & Shelke, R. N. Eco-friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1, 8 (2H, 5H)‐diones in an aqueous solvent. Chin. J. Chem. 66 (8), 822–828 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hasannezhad, N. & Shadjou, N. KCC-1‐nPr‐NH‐Arg as an efficient organo‐nanocatalyst for the green synthesis of 1, 8‐dioxo Decahydroacridine derivatives. J. Mol. Recognit. 35 (6), 2956–2960 (2022).

    Article 

    Google Scholar 

  • Shi, D. Q. et al. An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. J. Heterocycl. Chem. 45 (3), 653–660 (2008).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Amiri, Z., Malmir, M., Hosseinnejad, T., Kafshdarzadeh, K. & Heravi, M. M. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. J. Mol. Catal. B Enzym. 524, 11231–11236 (2022).

    Google Scholar 

  • Tekale, S. U., Pagore, V. P., Kauthale, S. S. & Pawar, R. P. La2O3/TFE: an efficient system for room temperature synthesis of Hantzsch polyhydroquinolines. Chin. Chem. Lett. 25 (8), 1149–1152 (2014).

    Article 
    CAS 

    Google Scholar 

  • Dhane, N. S. et al. Synthesis of 1, 8-dioxodecahydroacridines via Hantzsch condensation using Theophylline in an aqueous medium: an eco-friendly and bio-based approach. Res. Chem. Intermed. 50 (3), 1147–1160 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zare, A., Abi, F., Moosavi-Zare, A. R., Beyzavi, M. H. & Zolfigol, M. A. Synthesis, characterization and application of ionic liquid 1, 3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the Preparation of hexahydroquinolines. J. Mol. Liq. 178, 113–121 (2013).

    Article 
    CAS 

    Google Scholar 

  • Asghariganjeh, M. R. & Nasirveise, P. Using of ZnCl 2/AlCl3-SiO2 catalyzed for one-pot and three substituted synthesis of 1, 4-dihydropyridine derivatives via Hantzsch reaction. Asian J. Chem. 25 (5), 2937–2938 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kidwai, M. et al. Nafion-H®-catalyzed synthesis of polyhydroquinolines via the hantzsch multicomponent reaction. Monatsh Chemie. 143, 1675–1680 (2012).

    Article 
    CAS 

    Google Scholar 

  • Reddy, C. S. & Raghu, M. Cerium (IV) ammonium nitrate catalysed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multicomponent condensation. Chin. Chem. Lett. 19 (7), 775–779 (2008).

    Article 
    CAS 

    Google Scholar 

  • Kalhor, S., Yarie, M., Rezaeivala, M. & Zolfigol, M. A. Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4, 6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation. Res. Chem. Intermed. 45, 3453–3480 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sudarshan, D., Sougata, S. & Adinath, P. M. Alakananda, hajra. Zwitterionic imidazolium salt: recent advances in organocatalysis. Synthesis 48, A–Q (2016).

    Google Scholar 

  • Vahdat, S. M., Khaksar, S., Akbari, M. & Baghery, S. Sulfonated organic heteropolyacid salts as a highly efficient and green solid catalysts for the synthesis of 1, 8-dioxo-decahydroacridine derivatives in water. Arab. J. Chem. 12 (7), 1515–1521 (2019).

    Article 
    CAS 

    Google Scholar 

  • Abdelghany, A. M., Menazea, A. A., Abd-El‐Maksoud, M. A. & Khatab, T. K. Pulsed laser ablated zeolite nanoparticles: a novel nano‐catalyst for the synthesis of 1, 8‐dioxo‐octahydroxanthene and N‐aryl‐1,8‐dioxodecahydroacridine with molecular Docking validation. Appl. Organomet. Chem. 34 (2), 5250–5258 (2020).

    Article 

    Google Scholar 

  • Madankumar, N. & Pitchumani, K. β-Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1, 8‐dioxodecahydroacridines in water. ChemistrySelect 3 (39), 10886–10891 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ramesh, K. B. & Pasha, M. A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1, 8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity. BMCL 24 (16), 3907–3913 (2014).

    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *