Design and synthesis, and experimental-computational analysis of an acetic acid-functionalized zinc tetrapyridinoporphyrazine catalyst for synthesizing acridine and quinoline derivatives

Kharisov, B. I., Blanco-Jerez, L. M. & García-Luna, A. Direct electrochemical synthesis of metal complexes. Lanthanide phthalocyanines: optimization of the synthesis. Revista De La. Sociedad QuíMica De MéXico. 43 (2), 50–53 (1999). http://www.redalyc.org/pdf/475/47543103.pdf
Google Scholar
Linstead, R. P. 212. Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. (Resumed) 1934, 1016–1017. (1934).
Linstead, R. P. & Lowe, A. R. 214. Phthalocyanines. Part III. Preliminary experiments on the Preparation of phthalocyanines from phthalonitrile. J. Chem. Soc. (Resumed) 1934, 1022–1027. (1934).
Anderson, J. S., Bradbrook, E. F., Cook, A. H. & Linstead, R. P. Phthalocyanines and associated compounds. Part XIII. Absorption spectra. J Chem. Soc 1938, 1151–1156 (1938).
Salah, A., Fatma, H., Hamdi, Z. Y., Salwa, A. H. & Atef, A. S. S, D., Various characteristics and catalytic performance of iron (II) phthalocyanine immobilized onto titania- and vanadia-pillared bentonite clay in in situ polymerization of Methyl methacrylate: an attempt to synthesize novel polymer/iron phthalocyanine/pillared clay nanocomposites. Journal Mol. Catal. A: Chemical 332 (1–2), 93 – 10 (2010).
Hamad, A. E. R. M. A. E. A., Soliman, H. A. & Elhady, A. M. M. OM. Boosting the catalytic performance of manganese (III)-porphyrin complex MnTSPP for facile one-pot green synthesis of 1,4-dihydropyridine derivatives under mild conditions. Appl Organomet Chem 35, e6238. (2021).
Sobhani, S., Safaei, E., Hasaninejad, A. & Rezazadeh, S. An eco-friendly procedure for the efficient synthesis of bis(indolyl)methanes in aqueous media. J. Organomet. Chem. 694 (18), 3027–3031. (2009).
Google Scholar
Meunier, B. & Sorokin, A. Oxidation of pollutants catalyzed by metallophthalocyanines. Acc. Chem. Res. 30 (11), 470–476. (1997).
Google Scholar
Rajagopal, G., Kim, S. S. & George, S. C. Aluminum phthalocyanine: an active and simple catalyst for cyanosilylation of aldehydes. Appl. Organomet. Chem. 21 (3), 198–202. (2007).
Google Scholar
Sharma, V. B., Jain, S. L. & Sain, B. An efficient method for the olefination of aldehydes with Ethyl Diazoacetate using iron (II) phthalocyanine as catalyst. Catal. Lett. 98 (2–3), 141–143. (2004).
Google Scholar
Dong, Z. & Scammells, P. J. New methodology for the N-Demethylation of opiate alkaloids. J. Org. Chem. 72 (26), 9881–9885. (2007).
Google Scholar
Mbambisa, G., Nombona, N. & Nyokong, T. The formation of self-assembled monolayers of thiophthalocyanine complexes of titanium, vanadium and manganese and their use in l-cysteine electrocatalysis. Microchem. J. 93 (1), 60–66 (2009).
Google Scholar
Özçeşmeci, I., Yerli, Y., Okur, A. & Gül, I. Synthesis and EPR studies of a near infrared absorbing tetrakis(2-naphthoxy) Vanadylphthalocyanine. Inorg. Chem. Commun. 12 (7), 625–627 (2009).
Google Scholar
Smith, T. D., Livorness, J., Taylor, H., Pilbrow, J. R. & Sinclair, G. R. Physico-chemical study of copper (II) and Cobalt (II) chelates of tetra-2,3-pyridinoporphyrazine. J. Chem. Soc. Dalton Trans. 7, 1391. (1983).
Google Scholar
Moser, F. H., Thomas, A. L. & Phthalocyanines A.C.S. Monograph 157 (Reinhold Publishing Corp., 1963).
Lever, A. The phthalocyanines. In Advances in Inorganic Chemistry and Radiochemistry 27–114 (1965). https://doi.org/10.1016/s0065-2792(08)60314-3.
Jahnke, H., Schoenborn, M. & Zimmermann, G. ChemInForm abstract: organic dyestuffs as catalysts for fuel cells. Chemischer Informationsdienst. 7 (16), 133–181. (1976).
Google Scholar
Mbambisa, G. & Nyokong, T. Synthesis and electrochemical characterisation of a near infrared absorbing Oxo vanadium (IV) octapentylthio-phthalocyanine. Polyhedron 27 (13), 2799–2804. (2008).
Google Scholar
Snow, A. W. in: Kadish K.M, (eds Smith, K. M. & Guilard, R.) Porphyrin Handbook, Phthalocyanines: Properties and Materials. 17, Academic, New York, (2003).
Ozawa, K. & Ishii, K. Photophysical and magnetic properties of magnetic silica gel-supported silicon phthalocyanine complexes. Phys. Chem. Chem. Phys. 11 (7), 1019–1022. (2008).
Google Scholar
El-Remaily, A. A., Abu-Dief, M. A. E., El-Khatib, R. M. & A. M., and A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organometal Chem. 30, 1022–1029. (2016).
Google Scholar
Gong, W., Liu, Y., Li, H. & Cui, Y. Metal-organic frameworks as solid Brønsted acid catalysts for advanced organic transformations. Coord. Chem. Rev. 420, 213400 (2020).
Google Scholar
Moosavi-Zare, A. R. et al. Synthesis and characterization of acetic acid functionalized Poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. A-chemical. 425, 217–228 (2016).
Google Scholar
Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. E. A. A. A. & Abdel-Ghany, H. Synthesis of pyrimidine, dihydropyrimidinone, and dihydroimidazole derivatives under free solvent conditions and their antibacterial evaluation. J. Heterocycl. Chem. 51, 1202–1209. (2014).
Google Scholar
Verma, S., Verma, S., Agrwal, A. & Kasana, V. Tetrabutylammonium valinate ionic liquid grafted Nano-SiO2: A novel heterogeneous and reusable catalytic system for the synthesis of Naphthopyran derivatives under Solvent-Less. Condition Polycycl. Aromatic Compd. 44 (4), 2442–2457. (2023).
Google Scholar
Khazaei, A., Sarmasti, N., Seyf, J. Y. & Tavasoli, M. Synthesis of hexahydroquinoline (HHQ) derivatives using ZrOCl₂·8H₂O as a potential green catalyst and optimization of reaction conditions using design of experiment (DOE). RSC Adv. 5 (123), 101268–101275 (2015).
Google Scholar
Hantzsch, A. Ueber die synthese pyridinartiger verbindungen Aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem. 215 (1), 1–82 (1882).
Google Scholar
Moeinimehr, M., Safaiee, M. & Taherpour, A. A. Synthesis and characterization of a new zwitterionic phthalocyanine for efficient synthesis of polyhydroquinoline and Chromene derivatives. ChemistrySelect 9 (27), 20240–20245 (2024).
Google Scholar
Akbarpoor, T., Khazaei, A., Seyf, J. Y., Sarmasti, N. & Gilan, M. M. One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation. Res. Chem. Intermed. 46, 1539–1554 (2020).
Google Scholar
Ahmed, E. A., Soliman, A. M. M., Ali, A. M. & Ali El-Remaily Mahmoud Abd El Aleem Ali. Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium. Appl. Organomet. Chem. 35, e6197. (2021).
Google Scholar
Agrwal, A. et al. CoONPs@CoCh – A recyclable catalyst for One-pot synthesis of triarylpyridines. Org. Prep. Proced. Int. 55 (3), 243–250. (2022).
Google Scholar
Hussain-Khil, N., Ghorbani-Choghamarani, A. & Mohammadi, M. A new silver coordination polymer based on 4, 6-diamino-2-pyrimidinethiol: synthesis, characterization and catalytic application in asymmetric Hantzsch synthesis of polyhydroquinolines. Int. J. Sci. Rep. 11 (1), 15657–15663 (2021).
Google Scholar
Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. Rapidly and highly yielded synthesis of pyrimidine, dihydropyrimidinone, and Triazino[2,1-b]quinazolin-6-ones derivatives. J. Heterocycl. Chem. 50 (6), 1425–1430. (2013).
Google Scholar
Ghorbani-Choghamarani, A., Aghavandi, H., Khanmohammadi-Sarabi, F. & Zolfigol, M. A. Simple synthesis of the novel Cu-Cya-Mof: A Metal-Organic framework as a green and recoverable catalyst for the asymmetric Hantzsch synthesis of polyhydroquinoline derivatives. Available SSRN 4258056 (2022).
Agrwal, A. & Kasana, V. [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction. J. Chem. Sci. 132 (67). (2020).
Sam, M., Dekamin, M. G. & Alirezvani, Z. Dendrons containing boric acid and 1, 3, 5-tris (2-hydroxyethyl) isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci. Rep. 11 (1), 2399–2405 (2021).
Google Scholar
Goni, L. K., Mazumder, J., Tripathy, M. A., Quraishi, M. A. & D. B. and Acridine and its derivatives: synthesis, biological, and anticorrosion properties. Materials 15 (21), 7560–7565 (2022).
Google Scholar
Wainwright, M. Acridine a neglected antibacterial chromophore. J. Antimicrob. Chemother. 47 (1), 1–13 (2001).
Google Scholar
Kumar, R., Kaur, M., Kumari, M. & Acridine A versatile heterocyclic nucleus. Acta Pol. Pharm. 69 (1), 3–9 (2012).
Google Scholar
Zhang, B., Li, X., Li, B., Gao, C. & Jiang, Y. Acridine and its derivatives: a patent review (2009–2013). Expert Opin. Ther. Pat. 24 (6), 647–664 (2014).
Google Scholar
Lee, H. H. et al. Hypoxia-selective antitumor agents. 13. Effects of acridine substitution on the hypoxia-selective cytotoxicity and metabolic reduction of the bis-bioreductive agent Nitracrine N-oxide. J. Med. Chem. 39 (13), 2508–2517 (1996).
Google Scholar
de Aquino, R. A. N., Modolo, L. V., Alves, R. B. & de Fátima Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org. Biomol. Chem 11 (48), 8395–8409 (2013).
Bernthsen, A. Die acridine. Justus Liebigs Ann. Chem. 224 (1–2), 1–56 (1884).
Google Scholar
Zolfigol, M. A., Karimi, F., Yarie, M. & Torabi, M. Catalytic application of sulfonic acid-functionalized titana‐coated magnetic nanoparticles for the Preparation of 1, 8‐dioxodecahydroacridines and 2, 4, 6‐triarylpyridines via anomeric‐based oxidation. Appl. Organometal Chem. 32 (2), 4063–4068 (2018).
Google Scholar
Aher, D. S., Khillare, K. R. & Shankarwar, S. G. Incorporation of Keggin-based h₃pw₇mo₅o₄₀ into bentonite: synthesis, characterization and catalytic applications. RSC Adv. 11 (19), 11244–11254 (2021).
Google Scholar
Honari, M., Kiasat, A. R., Sanaeishoar, H. & Mohammadi, M. K. Fe3O4@ nSiO2@ mSiO2/DBU: a novel and effective basic magnetic nanocatalyst in the multicomponent one pot synthesis of polyhydroacridines and polyhydroquinolines. PACs 42 (4), 1728–1746 (2022).
Google Scholar
Aute, D., Parhad, A., Vikhe, V., Uphad, B. & Gadhave, A. Aluminized polyborate catalyzed efficient solvent-free synthesis of 1, 8-dioxo-decahydroacridines via Hantzsch condensation. Curr. Chem. Lett. 13 (2), 417–424 (2024).
Google Scholar
Sardar, B., Jamatia, R., Pal, D. & Srimani, D. Multicomponent dehydrogenative synthesis of acridine-1, 8‐diones catalyzed by Ru‐doped hydrotalcite. Asian J. Org. Chem. 10 (8), 2195–2204 (2021).
Google Scholar
Safaiee, M., Moeinimehr, M. & Zolfigol, M. A. Pyridiniumporphyrazinato oxo-vanadium tribromomethanide as a new source of Br + catalyst for the chemo and homoselective oxidation of sulfides and benzylic alcohols. Polyhedron 170, 138–150 (2019).
Google Scholar
Dashteh, M., Safaiee, M., Baghery, S. & Zolfigol, M. A. Application of Cobalt phthalocyanine as a nanostructured catalyst in the synthesis of biological henna-based compounds. Appl. Organomet. Chem. 33, e4690 (2018).
Google Scholar
Zolfigol, M. A., Safaiee, M. & Bahrami-Nejada, N. Dendrimeric magnetic nanoparticle cores with Co-phthalocyanine tags and their application in the synthesis of tetrahydrobenzo [b] Pyran derivatives. New. J. Chem. 40, 5071–5079 (2016).
Google Scholar
Safaiee, M., Zolfigol, M. A., Afsharnadery, F. & Baghery, S. Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nano particles: as an efficient catalyst for the synthesis of 3, 4-dihydropyrano [c] Chromenes. RSC Adv. 5, 102340–102349 (2015).
Google Scholar
Dashteh, M. et al. Synthesis of Cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tags as an efficient catalyst and its application for the synthesis of bicyclic ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. RSC Adv. 10, 27824–27834 (2020).
Google Scholar
Dashteh, M. et al. Design and synthesis of nickel tetra-2,3‐pyridiniumporphyrazinato trinitromethanide as an influential catalyst and its application in the synthesis of 1,2,4-triazolo based compounds. J. Phys. Chem. Solids. 160, 110322 (2020).
Google Scholar
Moeinimehr, M., Safaiee, M., Zolfigol, M. A. & Taherpour, A. A. Synthesis and application of nano vanadium-oxo Pyridiniumporphyrazinato sulfonic acid for synthesizing pyrazole and dihydropyrano[2,3]pyrazole derivatives. ChemistrySelect 7, e202200849 (2022).
Google Scholar
Moeinimehr, M., Safaiee, M. & Taherpour, A. A. First synthesis of the Pyridiniumporphyrazinato Oxo-Vanadium sulfonic acid nitrate as an efficient reagent for selective nitration of aromatic derivatives by in situ generation of NO2 and the corresponding theoretical studies. J. Mol. Struct. 1325, 140935. (2025).
Google Scholar
Frisch, M. et al. Gaussian 09 Revision A. 1, 2009 (Vol. Gaussian Inc, 2009).
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 34, 1429–1437 (2013).
Google Scholar
Momeni, S. & GhorbaniVaghei, R. An efficient, green and solvent-free protocol for one-pot synthesis of 1, 4-dihydropyridine derivatives using a new recyclable heterogeneous catalyst. J. Mol. Struct. 1288, 13575–13579 (2023).
Google Scholar
Zhang, Q., Ma, X. M., Wei, H. X., Zhao, X. & Luo, J. Covalently anchored tertiary amine functionalized ionic liquid on silica coated nano-Fe3O4 as a novel, efficient and magnetically recoverable catalyst for the unsymmetrical Hantzsch reaction and Knoevenagel condensation. RSC Adv. 7 (85), 53861–53870 (2017).
Google Scholar
Ghorbani, M., Noura, S., Oftadeh, M. & Zolfigol, M. A. Novel ionic liquid [2-Eim] HSO4 as a dual catalytic-solvent system for Preparation of hexahydroquinolines under green conditions. RSC Adv. 5 (68), 55303–55312 (2015).
Google Scholar
Fatma, S., Ankit, P., Singh, M., Singh, S. B. & Singh, J. Nucleophilic, heterocyclic, carbene-catalyzed, solvent-free, one-pot synthesis of polyhydroquinolines via multicomponent Hantzsch reaction: an efficient and ecofriendly approach. Synth. Commun. 44 (12), 1810–1816 (2014).
Google Scholar
Mohammadi, M. & Ghorbani-Choghamarani, A. Synthesis and characterization of novel hercynite@ sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2, 3-dihydroquinazolin-4 (1 H)-ones. RSC Adv. 12 (5), 2770–2787 (2022).
Google Scholar
Kumar, S., Sharma, P., Kapoor, K. K. & Hundal, M. S. An efficient, catalyst-and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64 (3), 536–542 (2008).
Google Scholar
Fan, X., Li, Y., Zhang, X., Qu, G. & Wang, J. An efficient and green Preparation of 9-arylacridine‐1, 8‐dione derivatives. Heteroat. Chemistry: Int. J. Main Group. Met. Chem. 18 (7), 786–790 (2007).
Google Scholar
Kiani, M. & Mohammadipour, M. Fe3O4@ SiO2–MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1, 8-dioxo-decahydroacridine derivatives. RSC Adv. 7 (2), 997–1007 (2017).
Google Scholar
Chavan, P. N., Pansare, D. N. & Shelke, R. N. Eco-friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1, 8 (2H, 5H)‐diones in an aqueous solvent. Chin. J. Chem. 66 (8), 822–828 (2019).
Google Scholar
Hasannezhad, N. & Shadjou, N. KCC-1‐nPr‐NH‐Arg as an efficient organo‐nanocatalyst for the green synthesis of 1, 8‐dioxo Decahydroacridine derivatives. J. Mol. Recognit. 35 (6), 2956–2960 (2022).
Google Scholar
Shi, D. Q. et al. An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. J. Heterocycl. Chem. 45 (3), 653–660 (2008).
Google Scholar
Amiri, Z., Malmir, M., Hosseinnejad, T., Kafshdarzadeh, K. & Heravi, M. M. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. J. Mol. Catal. B Enzym. 524, 11231–11236 (2022).
Tekale, S. U., Pagore, V. P., Kauthale, S. S. & Pawar, R. P. La2O3/TFE: an efficient system for room temperature synthesis of Hantzsch polyhydroquinolines. Chin. Chem. Lett. 25 (8), 1149–1152 (2014).
Google Scholar
Dhane, N. S. et al. Synthesis of 1, 8-dioxodecahydroacridines via Hantzsch condensation using Theophylline in an aqueous medium: an eco-friendly and bio-based approach. Res. Chem. Intermed. 50 (3), 1147–1160 (2024).
Google Scholar
Zare, A., Abi, F., Moosavi-Zare, A. R., Beyzavi, M. H. & Zolfigol, M. A. Synthesis, characterization and application of ionic liquid 1, 3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the Preparation of hexahydroquinolines. J. Mol. Liq. 178, 113–121 (2013).
Google Scholar
Asghariganjeh, M. R. & Nasirveise, P. Using of ZnCl 2/AlCl3-SiO2 catalyzed for one-pot and three substituted synthesis of 1, 4-dihydropyridine derivatives via Hantzsch reaction. Asian J. Chem. 25 (5), 2937–2938 (2013).
Google Scholar
Kidwai, M. et al. Nafion-H®-catalyzed synthesis of polyhydroquinolines via the hantzsch multicomponent reaction. Monatsh Chemie. 143, 1675–1680 (2012).
Google Scholar
Reddy, C. S. & Raghu, M. Cerium (IV) ammonium nitrate catalysed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multicomponent condensation. Chin. Chem. Lett. 19 (7), 775–779 (2008).
Google Scholar
Kalhor, S., Yarie, M., Rezaeivala, M. & Zolfigol, M. A. Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4, 6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation. Res. Chem. Intermed. 45, 3453–3480 (2019).
Google Scholar
Sudarshan, D., Sougata, S. & Adinath, P. M. Alakananda, hajra. Zwitterionic imidazolium salt: recent advances in organocatalysis. Synthesis 48, A–Q (2016).
Vahdat, S. M., Khaksar, S., Akbari, M. & Baghery, S. Sulfonated organic heteropolyacid salts as a highly efficient and green solid catalysts for the synthesis of 1, 8-dioxo-decahydroacridine derivatives in water. Arab. J. Chem. 12 (7), 1515–1521 (2019).
Google Scholar
Abdelghany, A. M., Menazea, A. A., Abd-El‐Maksoud, M. A. & Khatab, T. K. Pulsed laser ablated zeolite nanoparticles: a novel nano‐catalyst for the synthesis of 1, 8‐dioxo‐octahydroxanthene and N‐aryl‐1,8‐dioxodecahydroacridine with molecular Docking validation. Appl. Organomet. Chem. 34 (2), 5250–5258 (2020).
Google Scholar
Madankumar, N. & Pitchumani, K. β-Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1, 8‐dioxodecahydroacridines in water. ChemistrySelect 3 (39), 10886–10891 (2018).
Google Scholar
Ramesh, K. B. & Pasha, M. A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1, 8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity. BMCL 24 (16), 3907–3913 (2014).
Google Scholar
link