Vibrational weak and strong coupling modify a chemical reaction via cavity-mediated radiative energy transfer

0
Vibrational weak and strong coupling modify a chemical reaction via cavity-mediated radiative energy transfer
  • Thomas, A. et al. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 9, 249–255 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lather, J., Bhatt, P., Thomas, A., Ebbesen, T. W. & George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58, 10635–10638 (2019).

    Article 
    CAS 

    Google Scholar 

  • Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hirai, K., Ishikawa, H., Takahashi, Y., Hutchison, J. A. & Uji-I, H. Autotuning of vibrational strong coupling for site-selective reactions. Chem. Eur. J. 28, e202201260 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, W., Triana, J. F., Recabal, F., Herrera, F. & Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 380, 1165–1168 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Phase transition of a perovskite strongly coupled to the vacuum field. Nanoscale 6, 7243–7248 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sandeep, K. et al. Manipulating the self-assembly of phenyleneethynylenes under vibrational strong coupling. J. Phys. Chem. Lett. 13, 1209–1214 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field. J. Am. Chem. Soc. 144, 12177–12183 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pannir-Sivajothi, S., Campos-Gonzalez-Angulo, J. A., Martínez-Martínez, L. A., Sinha, S. & Yuen-Zhou, J. Driving chemical reactions with polariton condensates. Nat. Commun. 13, 1645 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • del Pino, J., Garcia-Vidal, F. J. & Feist, J. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser. Phys. Rev. Lett. 117, 277401 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramezani, M. et al. Plasmon–exciton–polariton lasing. Optica 4, 31–37 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hertzog, M., Wang, M., Mony, J. & Börjesson, K. Strong light–matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48, 937–961 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simpkins, B. S., Dunkelberger, A. D. & Owrutsky, J. C. Mode-specific chemistry through vibrational strong coupling (or a wish come true). J. Phys. Chem. C 125, 19081–19087 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wiesehan, G. D. & Xiong, W. Negligible rate enhancement from reported cooperative vibrational strong coupling catalysis. J. Chem. Phys. 155, 241103 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Imperatore, M. V., Asbury, J. B. & Giebink, N. C. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. J. Chem. Phys. 154, 191103 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, E. S. H. et al. Charge transport in phthalocyanine thin-film transistors coupled with Fabry–Perot cavities. J. Mater. Chem. C 9, 2368–2374 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pilar, P., Bernardis, D. D. & Rabl, P. Thermodynamics of ultrastrongly coupled light–matter systems. Quantum 4, 335 (2020).

    Article 

    Google Scholar 

  • Yuen-Zhou, J., Xiong, W. & Shegai, T. Polariton chemistry: molecules in cavities and plasmonic media. J. Chem. Phys. 156, 030401 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rider, M. S. & Barnes, W. L. Something from nothing: linking molecules with virtual light. Contemp. Phys. 62, 217–232 (2021).

    Article 

    Google Scholar 

  • Gonzalez-Ballestero, C., Feist, J., Gonzalo Badía, E., Moreno, E. & Garcia-Vidal, F. J. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117, 156402 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Cohn, B., Sufrin, S., Basu, A. & Chuntonov, L. Vibrational polaritons in disordered molecular ensembles. J. Phys. Chem. Lett. 13, 8369–8375 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378, 790–794 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, B. et al. Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling. Science 368, 665–667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, B. et al. Two-dimensional infrared spectroscopy of vibrational polaritons. Proc. Natl Acad. Sci. USA 115, 4845–4850 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, M. & Yuen-Zhou, J. Catalysis by dark states in vibropolaritonic chemistry. Phys. Rev. Lett. 128, 096001 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X., Mandal, A. & Huo, P. Theory of mode-selective chemistry through polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 12, 6974–6982 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindoy, L. P., Mandal, A. & Reichman, D. R. Resonant cavity modification of ground-state chemical kinetics. J. Phys. Chem. Lett. 13, 6580–6586 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fregoni, J., Garcia-Vidal, F. J. & Feist, J. Theoretical challenges in polaritonic chemistry. ACS Photon. 9, 1096–1107 (2022).

    Article 
    CAS 

    Google Scholar 

  • Du, M., Poh, Y. R. & Yuen-Zhou, J. Vibropolaritonic reaction rates in the collective strong coupling regime: Pollak–Grabert–Hänggi theory. J. Phys. Chem. C 127, 5230–5237 (2023).

    Article 
    CAS 

    Google Scholar 

  • Campos-Gonzalez-Angulo, J. A., Poh, Y. R., Du, M. & Yuen-Zhou, J. Swinging between shine and shadow: theoretical advances on thermally activated vibropolaritonic chemistry. J. Chem. Phys. 158, 230901 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindoy, L. P., Mandal, A. & Reichman, D. R. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. Nanophotonics 13, 2617–2633 (2024).

  • Xian, Y., Zhang, P., Zhai, S., Yang, P. & Zheng, Z. Re-estimation of thermal contact resistance considering near-field thermal radiation effect. Appl. Therm. Eng. 157, 113601 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tang, L., DeSutter, J. & Francoeur, M. Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon- and plasmon-polaritons. ACS Photon. 7, 1304–1311 (2020).

  • Mittapally, R. et al. Probing the limits to near-field heat transfer enhancements in phonon-polaritonic materials. Nano Lett. 23, 2187–2194 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D., Choi, S., Cho, J., Lim, M. & Lee, B. J. Boosting thermal conductivity by surface plasmon polaritons propagating along a thin Ti film. Phys. Rev. Lett. 130, 176302 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pascale, M. & Papadakis, G. T. Tight bounds and the role of optical loss in polariton-mediated near-field heat transfer. Phys. Rev. Appl. 19, 034013 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, H., Koga, N. & Galwey, A. K. Thermal dehydration of crystalline hydrates: microscopic studies and introductory experiments to the kinetics of solid-state reactions. J. Chem. Educ. 72, 251 (1995).

    Article 
    CAS 

    Google Scholar 

  • Brawley, Z. T., Storm, S. D., Contreras Mora, D. A., Pelton, M. & Sheldon, M. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. J. Chem. Phys. 154, 104305 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, H. & Huang, P. J. Dehydration of CuSO4·5H2O studied by thermo-Raman spectroscopy. J. Chin. Chem. Soc. 45, 59–66 (1998).

    Article 
    CAS 

    Google Scholar 

  • Fu, X., Yang, G., Sun, J. & Zhou, J. Vibrational spectra of copper sulfate hydrates investigated with low-temperature Raman spectroscopy and terahertz time domain spectroscopy. J. Phys. Chem. A 116, 7314–7318 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Widjaja, E., Chong, H. H. & Tjahjono, M. Use of thermo-Raman spectroscopy and chemometric analysis to identify dehydration steps of hydrated inorganic samples—application to copper sulfate pentahydrate. J. Raman Spectrosc. 41, 181–186 (2010).

    Article 
    CAS 

    Google Scholar 

  • Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: Inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).

    Article 
    CAS 

    Google Scholar 

  • Erwin, J. D., Wang, Y., Bradley, R. C. & Coe, J. V. Changing vibration coupling strengths of liquid acetonitrile with an angle-tuned etalon. J. Phys. Chem. B 125, 8472–8483 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, B. et al. Manipulating optical nonlinearities of molecular polaritons by delocalization. Sci. Adv. 5, eaax5196 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takele, W. M. et al. Scouting for strong light–matter coupling signatures in Raman spectra. Phys. Chem. Chem. Phys. 23, 16837–16846 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbas, M. N. et al. Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Appl. Phys. Lett. 98, 121116 (2011).

    Article 

    Google Scholar 

  • Berkhout, A. & Koenderink, A. F. Perfect absorption and phase singularities in plasmon antenna array etalons. ACS Photon. 6, 2917–2925 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xian, Y., Zheng, Z., Zhai, S. & Zhang, P. The effects of roughness, temperature, and near-field thermal radiation on the thermal contact resistance between dissimilar materials Si, SiO2 and SiC. ES Energy Environ. 19, 823 (2023).

    CAS 

    Google Scholar 

  • Fong, K. Y. et al. Phonon heat transfer across a vacuum through quantum fluctuations. Nature 576, 243–247 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, M. et al. Theory for polariton-assisted remote energy transfer. Chem. Sci. 9, 6659–6669 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, X. et al. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 56, 9034–9038 (2017).

    Article 
    CAS 

    Google Scholar 

  • Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. 128, 11634–11638 (2016).

    Article 

    Google Scholar 

  • Pannir-Sivajothi, S. & Yuen-Zhou, J. Blackbody radiation and thermal effects on chemical reactions and phase transitions in cavities. Preprint at (2024).

  • Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10, 4685 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. E., Nitzan, A. & Subotnik, J. E. On the origin of ground-state vacuum-field catalysis: equilibrium consideration. J. Chem. Phys. 152, 234107 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. & Vendrell, O. Suppression and enhancement of thermal chemical rates in a cavity. J. Phys. Chem. Lett. 13, 4441–4446 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, Y.-Y. et al. Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy*. Chinese Phys. B 28, 060702 (2019).

    Article 
    CAS 

    Google Scholar 

  • Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

  • Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

  • Rousseaux, B., Baranov, D. G., Käll, M., Shegai, T. & Johansson, G. Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems. Phys. Rev. B 98, 045435 (2018).

    Article 
    CAS 

    Google Scholar 

  • Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennas, quantum emitters, and densities of optical states. J. Opt. 22, 073501 (2020).

    Article 
    CAS 

    Google Scholar 

  • White, R. L. Variable temperature infrared study of copper sulfate pentahydrate dehydration. Thermochim. Acta 528, 58–62 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mahajan, S. et al. Understanding the surface-enhanced Raman spectroscopy “background”. J. Phys. Chem. C 114, 7242–7250 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pannir-Sivajothi, S. Thermal_Resistance_Model. GitHub (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *