Vibrational weak and strong coupling modify a chemical reaction via cavity-mediated radiative energy transfer

Thomas, A. et al. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 9, 249–255 (2020).
Google Scholar
Lather, J., Bhatt, P., Thomas, A., Ebbesen, T. W. & George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58, 10635–10638 (2019).
Google Scholar
Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).
Google Scholar
Hirai, K., Ishikawa, H., Takahashi, Y., Hutchison, J. A. & Uji-I, H. Autotuning of vibrational strong coupling for site-selective reactions. Chem. Eur. J. 28, e202201260 (2022).
Google Scholar
Ahn, W., Triana, J. F., Recabal, F., Herrera, F. & Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 380, 1165–1168 (2023).
Google Scholar
Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).
Google Scholar
Wang, S. et al. Phase transition of a perovskite strongly coupled to the vacuum field. Nanoscale 6, 7243–7248 (2014).
Google Scholar
Sandeep, K. et al. Manipulating the self-assembly of phenyleneethynylenes under vibrational strong coupling. J. Phys. Chem. Lett. 13, 1209–1214 (2022).
Google Scholar
Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field. J. Am. Chem. Soc. 144, 12177–12183 (2022).
Google Scholar
Pannir-Sivajothi, S., Campos-Gonzalez-Angulo, J. A., Martínez-Martínez, L. A., Sinha, S. & Yuen-Zhou, J. Driving chemical reactions with polariton condensates. Nat. Commun. 13, 1645 (2022).
Google Scholar
del Pino, J., Garcia-Vidal, F. J. & Feist, J. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser. Phys. Rev. Lett. 117, 277401 (2016).
Google Scholar
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Google Scholar
Ramezani, M. et al. Plasmon–exciton–polariton lasing. Optica 4, 31–37 (2017).
Google Scholar
Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).
Google Scholar
Hertzog, M., Wang, M., Mony, J. & Börjesson, K. Strong light–matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48, 937–961 (2019).
Google Scholar
Simpkins, B. S., Dunkelberger, A. D. & Owrutsky, J. C. Mode-specific chemistry through vibrational strong coupling (or a wish come true). J. Phys. Chem. C 125, 19081–19087 (2021).
Google Scholar
Wiesehan, G. D. & Xiong, W. Negligible rate enhancement from reported cooperative vibrational strong coupling catalysis. J. Chem. Phys. 155, 241103 (2021).
Google Scholar
Imperatore, M. V., Asbury, J. B. & Giebink, N. C. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. J. Chem. Phys. 154, 191103 (2021).
Google Scholar
Kang, E. S. H. et al. Charge transport in phthalocyanine thin-film transistors coupled with Fabry–Perot cavities. J. Mater. Chem. C 9, 2368–2374 (2021).
Google Scholar
Pilar, P., Bernardis, D. D. & Rabl, P. Thermodynamics of ultrastrongly coupled light–matter systems. Quantum 4, 335 (2020).
Google Scholar
Yuen-Zhou, J., Xiong, W. & Shegai, T. Polariton chemistry: molecules in cavities and plasmonic media. J. Chem. Phys. 156, 030401 (2022).
Google Scholar
Rider, M. S. & Barnes, W. L. Something from nothing: linking molecules with virtual light. Contemp. Phys. 62, 217–232 (2021).
Google Scholar
Gonzalez-Ballestero, C., Feist, J., Gonzalo Badía, E., Moreno, E. & Garcia-Vidal, F. J. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117, 156402 (2016).
Google Scholar
Cohn, B., Sufrin, S., Basu, A. & Chuntonov, L. Vibrational polaritons in disordered molecular ensembles. J. Phys. Chem. Lett. 13, 8369–8375 (2022).
Google Scholar
Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378, 790–794 (2022).
Google Scholar
Xiang, B. et al. Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling. Science 368, 665–667 (2020).
Google Scholar
Xiang, B. et al. Two-dimensional infrared spectroscopy of vibrational polaritons. Proc. Natl Acad. Sci. USA 115, 4845–4850 (2018).
Google Scholar
Du, M. & Yuen-Zhou, J. Catalysis by dark states in vibropolaritonic chemistry. Phys. Rev. Lett. 128, 096001 (2022).
Google Scholar
Li, X., Mandal, A. & Huo, P. Theory of mode-selective chemistry through polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 12, 6974–6982 (2021).
Google Scholar
Lindoy, L. P., Mandal, A. & Reichman, D. R. Resonant cavity modification of ground-state chemical kinetics. J. Phys. Chem. Lett. 13, 6580–6586 (2022).
Google Scholar
Fregoni, J., Garcia-Vidal, F. J. & Feist, J. Theoretical challenges in polaritonic chemistry. ACS Photon. 9, 1096–1107 (2022).
Google Scholar
Du, M., Poh, Y. R. & Yuen-Zhou, J. Vibropolaritonic reaction rates in the collective strong coupling regime: Pollak–Grabert–Hänggi theory. J. Phys. Chem. C 127, 5230–5237 (2023).
Google Scholar
Campos-Gonzalez-Angulo, J. A., Poh, Y. R., Du, M. & Yuen-Zhou, J. Swinging between shine and shadow: theoretical advances on thermally activated vibropolaritonic chemistry. J. Chem. Phys. 158, 230901 (2023).
Google Scholar
Lindoy, L. P., Mandal, A. & Reichman, D. R. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. Nanophotonics 13, 2617–2633 (2024).
Xian, Y., Zhang, P., Zhai, S., Yang, P. & Zheng, Z. Re-estimation of thermal contact resistance considering near-field thermal radiation effect. Appl. Therm. Eng. 157, 113601 (2019).
Google Scholar
Tang, L., DeSutter, J. & Francoeur, M. Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon- and plasmon-polaritons. ACS Photon. 7, 1304–1311 (2020).
Mittapally, R. et al. Probing the limits to near-field heat transfer enhancements in phonon-polaritonic materials. Nano Lett. 23, 2187–2194 (2023).
Google Scholar
Kim, D., Choi, S., Cho, J., Lim, M. & Lee, B. J. Boosting thermal conductivity by surface plasmon polaritons propagating along a thin Ti film. Phys. Rev. Lett. 130, 176302 (2023).
Google Scholar
Pan, Z. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).
Google Scholar
Pascale, M. & Papadakis, G. T. Tight bounds and the role of optical loss in polariton-mediated near-field heat transfer. Phys. Rev. Appl. 19, 034013 (2023).
Google Scholar
Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).
Google Scholar
Tanaka, H., Koga, N. & Galwey, A. K. Thermal dehydration of crystalline hydrates: microscopic studies and introductory experiments to the kinetics of solid-state reactions. J. Chem. Educ. 72, 251 (1995).
Google Scholar
Brawley, Z. T., Storm, S. D., Contreras Mora, D. A., Pelton, M. & Sheldon, M. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. J. Chem. Phys. 154, 104305 (2021).
Google Scholar
Chang, H. & Huang, P. J. Dehydration of CuSO4·5H2O studied by thermo-Raman spectroscopy. J. Chin. Chem. Soc. 45, 59–66 (1998).
Google Scholar
Fu, X., Yang, G., Sun, J. & Zhou, J. Vibrational spectra of copper sulfate hydrates investigated with low-temperature Raman spectroscopy and terahertz time domain spectroscopy. J. Phys. Chem. A 116, 7314–7318 (2012).
Google Scholar
Widjaja, E., Chong, H. H. & Tjahjono, M. Use of thermo-Raman spectroscopy and chemometric analysis to identify dehydration steps of hydrated inorganic samples—application to copper sulfate pentahydrate. J. Raman Spectrosc. 41, 181–186 (2010).
Google Scholar
Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: Inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).
Google Scholar
Erwin, J. D., Wang, Y., Bradley, R. C. & Coe, J. V. Changing vibration coupling strengths of liquid acetonitrile with an angle-tuned etalon. J. Phys. Chem. B 125, 8472–8483 (2021).
Google Scholar
Xiang, B. et al. Manipulating optical nonlinearities of molecular polaritons by delocalization. Sci. Adv. 5, eaax5196 (2019).
Google Scholar
Takele, W. M. et al. Scouting for strong light–matter coupling signatures in Raman spectra. Phys. Chem. Chem. Phys. 23, 16837–16846 (2021).
Google Scholar
Abbas, M. N. et al. Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Appl. Phys. Lett. 98, 121116 (2011).
Google Scholar
Berkhout, A. & Koenderink, A. F. Perfect absorption and phase singularities in plasmon antenna array etalons. ACS Photon. 6, 2917–2925 (2019).
Google Scholar
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
Google Scholar
Xian, Y., Zheng, Z., Zhai, S. & Zhang, P. The effects of roughness, temperature, and near-field thermal radiation on the thermal contact resistance between dissimilar materials Si, SiO2 and SiC. ES Energy Environ. 19, 823 (2023).
Google Scholar
Fong, K. Y. et al. Phonon heat transfer across a vacuum through quantum fluctuations. Nature 576, 243–247 (2019).
Google Scholar
Du, M. et al. Theory for polariton-assisted remote energy transfer. Chem. Sci. 9, 6659–6669 (2018).
Google Scholar
Zhong, X. et al. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 56, 9034–9038 (2017).
Google Scholar
Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).
Google Scholar
Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. 128, 11634–11638 (2016).
Google Scholar
Pannir-Sivajothi, S. & Yuen-Zhou, J. Blackbody radiation and thermal effects on chemical reactions and phase transitions in cavities. Preprint at (2024).
Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10, 4685 (2019).
Google Scholar
Li, T. E., Nitzan, A. & Subotnik, J. E. On the origin of ground-state vacuum-field catalysis: equilibrium consideration. J. Chem. Phys. 152, 234107 (2020).
Google Scholar
Sun, J. & Vendrell, O. Suppression and enhancement of thermal chemical rates in a cavity. J. Phys. Chem. Lett. 13, 4441–4446 (2022).
Google Scholar
Ma, Y.-Y. et al. Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy*. Chinese Phys. B 28, 060702 (2019).
Google Scholar
Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015).
Google Scholar
Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012).
Google Scholar
Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).
Google Scholar
Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).
Rousseaux, B., Baranov, D. G., Käll, M., Shegai, T. & Johansson, G. Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems. Phys. Rev. B 98, 045435 (2018).
Google Scholar
Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennas, quantum emitters, and densities of optical states. J. Opt. 22, 073501 (2020).
Google Scholar
White, R. L. Variable temperature infrared study of copper sulfate pentahydrate dehydration. Thermochim. Acta 528, 58–62 (2012).
Google Scholar
Mahajan, S. et al. Understanding the surface-enhanced Raman spectroscopy “background”. J. Phys. Chem. C 114, 7242–7250 (2010).
Google Scholar
Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).
Google Scholar
Pannir-Sivajothi, S. Thermal_Resistance_Model. GitHub (2024).
link