Therapeutic developments in pancreatic cancer

0
  • Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    PubMed 

    Google Scholar 

  • Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Mahaseth, H. et al. Modified FOLFIRINOX regimen with improved safety and maintained efficacy in pancreatic adenocarcinoma. Pancreas 42, 1311–1315 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Google Scholar 

  • Wainberg, Z. A. et al. NAPOLI-3: a randomized, open-label phase 3 study of liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin (NALIRIFOX) versus nab-paclitaxel + gemcitabine in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 41, LBA661 (2023).

    Google Scholar 

  • Conroy, T. et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379, 2395–2406 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Neoptolemos, J. P. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389, 1011–1024 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Uesaka, K. et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 388, 248–257 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Springfeld, C. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Springfeld, C. & Neoptolemos, J. P. The role of neoadjuvant therapy for resectable pancreatic cancer remains uncertain. Nat. Rev. Clin. Oncol. 19, 285–286 (2022).

    PubMed 

    Google Scholar 

  • Schwarz, L. et al. Resectable pancreatic adenocarcinoma neo-adjuvant FOLF(IRIN)OX-based chemotherapy: a multicenter, non-comparative, randomized, phase II trial (PANACHE01-PRODIGE48 study). J. Clin. Oncol. 40, 4134 (2022).

    Google Scholar 

  • Labori, K. J. et al. Short-course neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer: a multicenter randomized phase-II trial (NORPACT-1). J. Clin. Oncol. 41, LBA4005 (2023).

    Google Scholar 

  • Katz, M. H. et al. Preoperative modified FOLFIRINOX treatment followed by capecitabine-based chemoradiation for borderline resectable pancreatic cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 151, e161137 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghaneh, P. et al. ESPAC-5F: four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pancreatic cancer. J. Clin. Oncol. 38, 4505 (2020).

    Google Scholar 

  • Versteijne, E. et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial. J. Clin. Oncol. 40, 1220–1230 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Katz, M. H. G. et al. Efficacy of preoperative mFOLFIRINOX vs mFOLFIRINOX plus hypofractionated radiotherapy for borderline resectable adenocarcinoma of the pancreas: the A021501 phase 2 randomized clinical trial. JAMA Oncol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghaneh, P. et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 157–168 (2023).

    PubMed 

    Google Scholar 

  • Pishvaian, M. J. et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative. Clin. Cancer Res. 24, 5018–5027 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Z. I. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin. Cancer Res. 24, 1326–1336 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguirre, A. J. et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. 8, 1096–1111 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowery, M. A. et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. Clin. Cancer Res. 23, 6094–6100 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sohal, D. P. S. et al. Metastatic pancreatic cancer: ASCO guideline update. J. Clin. Oncol. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Tempero, M. A. et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 19, 439–457 (2021).

    CAS 

    Google Scholar 

  • Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).

    Google Scholar 

  • Philip, P. A. et al. Molecular characterization of KRAS wild type tumors in patients with pancreatic adenocarcinoma. Clin. Cancer Res. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pishvaian, M. J. et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 21, 508–518 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999–2013.e3 (2018).

    PubMed 

    Google Scholar 

  • Connor, A. A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat. Rev. Cancer 22, 131–142 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Bailey, P. et al. Refining the treatment of pancreatic cancer from big data to improved individual survival. Function 4, zqad011 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashid, N. U. et al. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin. Cancer Res. 26, 82–92 (2020).

    PubMed 

    Google Scholar 

  • Kalimuthu, S. N. et al. Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317–328 (2020).

    Google Scholar 

  • O’Kane, G. M. et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin. Cancer Res. 26, 4901–4910 (2020).

    PubMed 

    Google Scholar 

  • Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Fuentes Antrás, J. et al. Molecular characterization of long-term and short-term survivors of advanced pancreatic ductal adenocarcinoma. J. Clin. Oncol. 40, 4024 (2022).

    Google Scholar 

  • Suurmeijer, J. A. et al. Impact of classical and basal-like molecular subtypes on overall survival in resected pancreatic cancer in the SPACIOUS-2 multicentre study. Br. J. Surg. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, H. L. et al. Spatially resolved single-cell assessment of pancreatic cancer expression subtypes reveals co-expressor phenotypes and extensive intratumoral heterogeneity. Cancer Res. 83, 441–455 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, C. R. et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. eLife 8, e45313 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Knox, J. J. et al. PASS-01: pancreatic adenocarcinoma signature stratification for treatment–01. J. Clin. Oncol. 40, TPS635 (2022).

    Google Scholar 

  • Nicolle, R. et al. A transcriptomic signature to predict adjuvant gemcitabine sensitivity in pancreatic adenocarcinoma. Ann. Oncol. 32, 250–260 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Nicolle, R. et al. Adjuvant gemcitabine is as efficient as mFOLFIRINOX in patients with GemPred + tumor signature and resected pancreatic adenocarcinoma (PDAC): an ancillary study of the PRODIGE-24 clinical trial. ESMO Congress 2022, Abstract 1297P (2022).

  • Reyngold, M. et al. Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer. JAMA Oncol. 7, 735–738 (2021).

    PubMed 

    Google Scholar 

  • Hassanzadeh, C. et al. Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation. Adv. Radiat. Oncol. 6, 100506 (2021).

    PubMed 

    Google Scholar 

  • Chuong, M. D. et al. Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adaptive replanning and elective nodal irradiation for inoperable pancreas cancer. Pract. Radiat. Oncol. 11, 134–147 (2021).

    PubMed 

    Google Scholar 

  • Hoffe, S. E. et al. GRECO-2: a randomized, phase 2 study of stereotactic body radiation therapy (SBRT) in combination with GC4711 in the treatment of unresectable or borderline resectable nonmetastatic pancreatic cancer (PC). J. Clin. Oncol. 39, TPS4175 (2021).

    Google Scholar 

  • Tuli, R. et al. Abstract B58: a phase I/II study of durvalumab and stereotactic radiotherapy in locally advanced pancreatic cancer. Cancer Res. (2019).

    Article 

    Google Scholar 

  • Bagley, A. F. et al. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: report of first patient experience. Clin. Transl. Radiat. Oncol. 33, 66–69 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heeke, A. L. et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. 2018, PO.17.00286 (2018).

    PubMed 

    Google Scholar 

  • Park, W. et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clin. Cancer Res. 26, 3239–3247 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowery, M. A. et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 16, 1397–1402 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Golan, T. et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br. J. Cancer 111, 1132–1138 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonnenblick, A. et al. Complete remission, in BRCA2 mutation carrier with metastatic pancreatic adenocarcinoma, treated with cisplatin based therapy. Cancer Biol. Ther. 12, 165–168 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • O’Reilly, E. M. et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J. Clin. Oncol. 38, 1378–1388 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps17 (2016).

    PubMed 

    Google Scholar 

  • Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Park, J. H. et al. BRCA 1/2 germline mutation predicts the treatment response of FOLFIRINOX with pancreatic ductal adenocarcinoma in Korean patients. Cancers 14, 236 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Golan, T. et al. Increased rate of complete pathologic response after neoadjuvant FOLFIRINOX for BRCA mutation carriers with borderline resectable pancreatic cancer. Ann. Surg. Oncol. 27, 3963–3970 (2020).

    PubMed 

    Google Scholar 

  • Reiss, K. A. et al. Retrospective survival analysis of patients with advanced pancreatic ductal adenocarcinoma and germline BRCA or PALB2 mutations. JCO Precis. Oncol. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lowery, M. A. et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur. J. Cancer 89, 19–26 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wattenberg, M. M. et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br. J. Cancer 122, 333–339 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kindler, H. L. et al. Overall survival results from the POLO trial: a phase III study of active maintenance olaparib versus placebo for germline BRCA-mutated metastatic pancreatic cancer. J. Clin. Oncol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiss, K. A. et al. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J. Clin. Oncol. 39, 2497–2505 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, T. J. et al. The clinical implications of reversions in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, or PALB2 after progression on rucaparib. Clin. Cancer Res. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiss, K. A. et al. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keane, F., Park, W. & O’Reilly, E. M. Homologous recombination deficiency in pancreatic cancer: poly (ADP-ribose) polymerase inhibition, checkpoint inhibition, or a combination of both? JCO Precis. Oncol. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Park, W. et al. Clinico-genomic characterization of ATM and HRD in pancreas cancer: application for practice. Clin. Cancer Res. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, W. et al. Phase 2 trial of pembrolizumab and olaparib (POLAR) maintenance for patients (pts) with metastatic pancreatic cancer (mPDAC): two cohorts B non-core homologous recombination deficiency (HRD) and C exceptional response to platinum-therapy. J. Clin. Oncol. 41, 4140 (2023).

    Google Scholar 

  • Li, H. et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol. Cancer 19, 107 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evers, B. et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin. Cancer Res. 16, 99–108 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wood, L. D. & Hruban, R. H. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 18, 492–501 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamisawa, T., Wood, L. D., Itoi, T. & Takaori, K. Pancreatic cancer. Lancet 388, 73–85 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Smit, V. T. et al. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 16, 7773–7782 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Joneson, T. & Bar-Sagi, D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell Biol. 19, 5892–5901 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal. Transduct. Target. Ther. 6, 386 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Waters, A. M. & Der, C. J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8, a031435 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibbs, J. B., Sigal, I. S., Poe, M. & Scolnick, E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA 81, 5704–5708 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, L. A., de Vos, A. M., Milburn, M. V. & Kim, S. H. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–516 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. 53, 199–204 (2014).

    CAS 

    Google Scholar 

  • Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biernacka, A. et al. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 209, 195–198 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bekaii-Saab, T. S. et al. KRYSTAL-1: updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. J. Clin. Oncol. 40, 519 (2022).

    Google Scholar 

  • Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Pant, S. et al. KRYSTAL-1: activity and safety of adagrasib (MRTX849) in patients with advanced solid tumors harboring a KRASG12C mutation. J. Clin. Oncol. 41, 425082 (2023).

    Google Scholar 

  • Lanman, B. A. et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J. Med. Chem. 63, 52–65 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Strickler, J. H. et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N. Engl. J. Med. 388, 33–43 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. A phase I/II study of first-in-human trial of JAB-21822 (KRAS G12C inhibitor) in advanced solid tumors. J. Clin. Oncol. 40, 3089 (2022).

    Google Scholar 

  • Bournet, B. et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin. Transl. Gastroenterol. 7, e157 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S., Balmain, A. & Counter, C. M. A model for RAS mutation patterns in cancers: finding the sweet spot. Nat. Rev. Cancer 18, 767–777 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kemp, S. B. et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13, 298–311 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28, 2171–2182 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z. & Shokat, K. M. Bifunctional small-molecule ligands of K-Ras induce its association with immunophilin proteins. Angew. Chem. Int. Ed. 58, 16314–16319 (2019).

    CAS 

    Google Scholar 

  • Gustafson, W. C. et al. Direct targeting of RAS in pancreatic ductal adenocarcinoma with RMC-6236, a first-in-class, RAS-selective, orally bioavailable, tri-complex RASMULTI(ON) inhibitor. J. Clin. Oncol. 40, 591 (2022).

    Google Scholar 

  • Gentile, D. R. et al. Ras binder induces a modified switch-II pocket in GTP and GDP states. Cell Chem. Biol. 24, 1455–1466.e14 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGee, J. H. et al. Exceptionally high-affinity Ras binders that remodel its effector domain. J. Biol. Chem. 293, 3265–3280 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hofmann, M. H. et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K.-K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bery, N., Miller, A. & Rabbitts, T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat. Commun. 11, 3233 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagashima, T. et al. ASP3082, a First-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur. J. Cancer 174, S30 (2022).

    Google Scholar 

  • Pant, S. et al. First-in-human phase 1 trial of ELI-002 immunotherapy as treatment for subjects with Kirsten rat sarcoma (KRAS)-mutated pancreatic ductal adenocarcinoma and other solid tumors. J. Clin. Oncol. 40, TPS2701 (2022).

    Google Scholar 

  • O’Reilly, E. M. et al. AMPLIFY-201, a first-in-human safety and efficacy trial of adjuvant ELI-002 2P immunotherapy for patients with high-relapse risk with KRAS G12D- or G12R-mutated pancreatic and colorectal cancer. J. Clin. Oncol. 41, 2528 (2023).

    Google Scholar 

  • Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Surana, R. et al. Phase I study of mesenchymal stem cell (MSC)-derived exosomes with KRASG12D siRNA in patients with metastatic pancreatic cancer harboring a KRASG12D mutation. J. Clin. Oncol. 40, TPS633 (2022).

    Google Scholar 

  • Varghese, A. M. et al. Early-onset pancreas cancer: clinical descriptors, genomics, and outcomes. J. Natl Cancer Inst. 113, 1194–1202 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heining, C. et al. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov. 8, 1087–1095 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Singhi, A. D. et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 156, 2242–2253.e4 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, M. S. & Pant, S. Personalizing medicine with germline and somatic sequencing in advanced pancreatic cancer: current treatments and novel opportunities. Am. Soc. Clin. Oncol. Educ. Book (2021).

    Article 
    PubMed 

    Google Scholar 

  • Luchini, C. et al. KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities. J. Exp. Clin. Cancer Res. 39, 227 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 21, 271–282 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Reilly, E. M. & Hechtman, J. F. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann. Oncol. 30, viii36–viii40 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pishvaian, M. J. et al. Entrectinib in TRK and ROS1 fusion-positive metastatic pancreatic cancer. JCO Precis. Oncol. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gower, A., Golestany, B., Gong, J., Singhi, A. D. & Hendifar, A. E. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to alectinib and lorlatinib. JCO Precis. Oncol. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyman, D. et al. 365O – Durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann. Oncol. (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schram, A. M. et al. Zenocutuzumab, a HER2xHER3 bispecific antibody, is effective therapy for tumors driven by NRG1 gene rearrangements. Cancer Discov. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ueda, S. et al. The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29, e1–e8 (2004).

    PubMed 

    Google Scholar 

  • Bruns, C. J. et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 60, 2926–2935 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Ng, S. S., Tsao, M. S., Nicklee, T. & Hedley, D. W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 1, 777–783 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Van Cutsem, E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 27, 2231–2237 (2009).

    PubMed 

    Google Scholar 

  • Philip, P. A. et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J. Clin. Oncol. 28, 3605–3610 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Qin, S. et al. Nimotuzumab combined with gemcitabine versus gemcitabine in K-RAS wild-type locally advanced or metastatic pancreatic cancer: a prospective, randomized-controlled, double-blinded, multicenter, and phase III clinical trial. J. Clin. Oncol. 40, LBA4011 (2022).

    Google Scholar 

  • Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).

    PubMed 

    Google Scholar 

  • Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hegde, S. et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307.e9 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed 

    Google Scholar 

  • Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Reilly, E. M. et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 5, 1431–1438 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Terrero, G. et al. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 8, 1–3 (2022).

    PubMed 

    Google Scholar 

  • Kim, A. M. J., Nemeth, M. R. & Lim, S.-O. 4-1BB: a promising target for cancer immunotherapy. Front. Oncol. 12, 968360 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muth, S. T. et al. CD137 agonist-based combination immunotherapy enhances activated, effector memory T cells and prolongs survival in pancreatic adenocarcinoma. Cancer Lett. 499, 99–108 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, L. et al. 812 Urelumab (anti-CD137 agonist) in combination with vaccine and nivolumab treatments is safe and associated with pathologic response as neoadjuvant and adjuvant therapy for resectable pancreatic cancer. J. Immunother. Cancer 8, A486 (2020).

    Google Scholar 

  • Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Grewal, I. S. & Flavell, R. A. The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev. 153, 85–106 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21, 265–272 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winograd, R. et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    PubMed 

    Google Scholar 

  • Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Chavez-Galan, L., Olleros, M. L., Vesin, D. & Garcia, I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front. Immunol. 6, 263 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshikawa, K. et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci. 103, 2012–2020 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Candido, J. B. et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23, 1448–1460 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magkouta, S. F. et al. CSF1/CSF1R axis blockade limits mesothelioma and enhances efficiency of anti-PDL1 immunotherapy. Cancers 13, 2546 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang-Gillam, A. et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 37, TPS465 (2019).

    Google Scholar 

  • Columbus, G. Nivolumab/Cabiralizumab Combo Misses PFS Endpoint in Pancreatic Cancer (2020).

  • Li, B.-H., Garstka, M. A. & Li, Z.-F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol. 117, 201–215 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugs 38, 800–811 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cherney, R. J. et al. BMS-813160: a potent CCR2 and CCR5 dual antagonist selected as a clinical candidate. ACS Med. Chem. Lett. 12, 1753–1758 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le, D. et al. Abstract CT124: a phase Ib/II study of BMS-813160, a CC chemokine receptor (CCR) 2/5 dual antagonist, in combination with chemotherapy or nivolumab in patients (pts) with advanced pancreatic or colorectal cancer. Cancer Res. 78, CT124 (2018).

    Google Scholar 

  • Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caligiuri, G. & Tuveson, D. A. Activated fibroblasts in cancer: perspectives and challenges. Cancer Cell 41, 434–449 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e7 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez, K. et al. Vitamin D receptor agonist paricalcitol plus gemcitabine and nab-paclitaxel in patients with metastatic pancreatic cancer. J. Clin. Oncol. 38, TPS784 (2020).

    Google Scholar 

  • Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melief, C. J. M. T-cell immunotherapy against mutant KRAS for pancreatic cancer. N. Engl. J. Med. 386, 2143–2144 (2022).

    PubMed 

    Google Scholar 

  • Balachandran, V. P. et al. Phase I trial of adjuvant autogene cevumeran, an individualized mRNA neoantigen vaccine, for pancreatic ductal adenocarcinoma. J. Clin. Oncol. 40, 2516 (2022).

    Google Scholar 

  • Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haldar, S. D. et al. A phase I study of a mutant KRAS-targeted long peptide vaccine combined with ipilimumab/nivolumab in resected pancreatic cancer and MMR-proficient metastatic colorectal cancer. J. Clin. Oncol. 41, TPS814 (2023).

    Google Scholar 

  • Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka, M. et al. Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J. Histochem. Cytochem. 59, 942–952 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahin, U. et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 14, 7624–7634 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Overman, M. J. et al. A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas. J. Clin. Oncol. 41, TPS765 (2023).

    Google Scholar 

  • Körner, M., Waser, B., Strobel, O., Büchler, M. & Reubi, J. C. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res. 5, 17 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, X. et al. Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids 49, 1325–1335 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baum, R. P. et al. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J. Nucl. Med. 59, 809–814 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Dean, A. et al. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study. Lancet Gastroenterol. Hepatol. 7, 943–951 (2022).

    PubMed 

    Google Scholar 

  • Hurtado de Mendoza, T. et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 12, 1541 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasi, A. et al. Phase Ib/IIa trial of CEND‐1 in combination with neoadjuvant FOLFIRINOX-based therapies in pancreatic, colorectal, and appendiceal cancers (CENDIFOX). J. Clin. Oncol. 40, TPS4195 (2022).

    Google Scholar 

  • Bates, S. E. Pancreatic cancer: challenge and inspiration. Clin. Cancer Res. 23, 1628 (2017).

    PubMed 

    Google Scholar 

  • Van Norman, G. A. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic Transl. Sci. 1, 170–179 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, A. & Bergan, R. C. Clinical trial design: past, present, and future in the context of big data and precision medicine. Cancer 126, 4838–4846 (2020).

    PubMed 

    Google Scholar 

  • FDA. Master Protocols: Efficient Clinical Trial Design Strategies to Expedite Development of Oncology Drugs and Biologics Guidance for Industry (2022).

  • Bogin, V. Master protocols: new directions in drug discovery. Contemp. Clin. Trials Commun. 18, 100568 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, V. et al. SO-4 phase Ib/II, open-label, randomised evaluation of atezolizumab plus RO6874281 vs control in MORPHEUS–pancreatic ductal adenocarcinoma. Ann. Oncol. 31 (Suppl. 3), S218 (2020).

    Google Scholar 

  • Pellat, A., Boutron, I. & Ravaud, P. Availability of results of trials studying pancreatic adenocarcinoma over the past 10 years. Oncologist (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adamska, A., Domenichini, A. & Falasca, M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int. J. Mol. Sci. 18, 1338 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang-Gillam, A. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387, 545–557 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Philip, P. A. et al. Avenger 500, a phase III open-label randomized trial of the combination of CPI-613 with modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) in patients with metastatic adenocarcinoma of the pancreas. J. Clin. Oncol. 37, TPS479 (2019).

    Google Scholar 

  • Sonbol, M. B. et al. CanStem111P trial: a phase III study of napabucasin plus nab-paclitaxel with gemcitabine. Future Oncol. 15, 1295–1302 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Tempero, M. et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase III RESOLVE study. Ann. Oncol. 32, 600–608 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hecht, J. R. et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J. Clin. Oncol. 39, 1108–1118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tempero, M. A. et al. Adjuvant nab-paclitaxel + gemcitabine in resected pancreatic ductal adenocarcinoma: results from a randomized, open-label, phase III trial. J. Clin. Oncol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *