Reproducibility in automated chemistry laboratories using computer science abstractions

Autoprotocol (Strateos Inc., 2021); https://autoprotocol.org/
Pendleton, I. M. et al. Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Commun. 9, 846–859 (2019).
Google Scholar
Leonov, A. I. et al. An integrated self-optimizing programmable chemical synthesis and reaction engine. Nat. Commun. 15, 1240 (2024).
Google Scholar
Documentation center. Emerald Cloud Lab (Emerald Cloud Lab, Inc, 2023).
Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).
Google Scholar
Schäfer, B. A., Poetz, D. & Kramer, G. W. Documenting laboratory workflows using the Analytical Information Markup Language. JALA 9, 375–381 (2004).
Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots. Adv. Sci. 7, 1901957 (2020).
Google Scholar
LabVIEW. LabVIEW Wiki (National Instruments, 2024) https://labviewwiki.org/wiki/LabVIEW
Bartley, B. et al. Building an open representation for biological protocols. ACM J. Emerg. Technol. Comput. Syst. 19, 1–21 (2023).
Google Scholar
Ananthanarayanan, V. & Thies, W. Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4, 13 (2010).
Google Scholar
Gupta, V., Irimia, J., Pau, I. & Rodríguez-Patón, A. BioBlocks: programming protocols in biology made easier. ACS Synth. Biol. 6, 1230–1232 (2017).
Google Scholar
Wierenga, R. P., Golas, S. M., Ho, W., Coley, C. W. & Esvelt, K. M. PyLabRobot: an open-source, hardware-agnostic interface for liquid-handling robots and accessories. Device 1, 100111 (2023).
Google Scholar
Rauschen, R., Guy, M., Hein, J. E. & Cronin, L. Universal chemical programming language for robotic synthesis repeatability. Nat. Synth. 3, 488–496 (2024).
Google Scholar
Leong, C. J. et al. An object-oriented framework to enable workflow evolution across materials acceleration platforms. Matter 5, 3124–3134 (2022).
Google Scholar
Canty, R. B., Koscher, B. A., McDonald, M. A. & Jensen, K. F. Integrating autonomy into automated research platforms. Digit. Discov. 2, 1259–1268 (2023).
Google Scholar
Alexandron, G., Armoni, M., Gordon, M. & Harel, D. Scenario-based programming: reducing the cognitive load, fostering abstract thinking. In Companion Proc. 36th International Conference on Software Engineering 311–320 (Association for Computing Machinery, 2014); https://doi.org/10.1145/2591062.2591167
Fidler, F. & Wilcox, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021).
Mandel, J. Repeatability and reproducibility. J. Qual. Technol. 4, 74–85 (1972).
Google Scholar
Feitelson, D. G. From repeatability to reproducibility and corroboration. ACM SIGOPS Oper. Syst. Rev. 49, 3–11 (2015).
Google Scholar
Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS Au (2024).
Google Scholar
Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).
Google Scholar
Bateni, F. et al. Smart Dope: a self-driving fluidic lab for accelerated development of doped perovskite quantum dots. Adv. Energy Mater. 14, 2302303 (2024).
Google Scholar
Leeman, J. et al. Challenges in high-throughput inorganic materials prediction and autonomous synthesis. PRX Energy 3, 011002 (2024).
Google Scholar
Sayre, F. & Riegelman, A. The reproducibility crisis and academic libraries. Coll. Res. Libr. (2018).
Google Scholar
Leins, D. A., Haase, S. B., Eslami, M., Schrier, J. & Freeman, J. T. Collaborative methods to enhance reproducibility and accelerate discovery. Digit. Discov. 2, 12–27 (2023).
Google Scholar
Liskov, B. & Zilles, S. Programming with abstract data types. ACM SIGPLAN Not. 9, 50–59 (1974).
Google Scholar
Parnas, D. L. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 1053–1058 (1972).
Google Scholar
Parnas, D. L., Shore, J. E. & Weiss, D. Abstract types defined as classes of variables. ACM SIGPLAN Not. 11, 149–154 (1976).
Google Scholar
Meyer, B. Applying ‘design by contract’. Computer 25, 40–51 (1992).
Google Scholar
Stevens, W. P., Myers, G. J. & Constantine, L. L. Structured design. IBM Syst. J. 13, 115–139 (1974).
Google Scholar
Taube-Schock, C., Walker, R. J. & Witten, I. H. Can we avoid high coupling? In ECOOP 2011 – Object-Oriented Programming (ed. Mezini, M.) 204–228 (Springer, 2011); https://doi.org/10.1007/978-3-642-22655-7_10
Christensen, M. et al. Automation isn’t automatic. Chem. Sci. 12, 15473–15490 (2021).
Google Scholar
Koscher, B. A. et al. Autonomous, multiproperty-driven molecular discovery: from predictions to measurements and back. Science 382, eadi1407 (2023).
Google Scholar
Karafiludis, S., Ryll, T. W., Buzanich, A. G., Emmerling, F. & Stawski, T. M. Phase stability studies on transition metal phosphates aided by an automated synthesis. CrystEngComm 25, 4333–4344 (2023).
Google Scholar
D’Agostino, C. et al. Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chem. Eur. J. 18, 14426–14433 (2012).
Google Scholar
Pomberger, A. et al. Automated pH adjustment driven by robotic workflows and active machine learning. Chem. Eng. J. 451, 139099 (2023).
Google Scholar
Nian, R., Liu, J. & Huang, B. A review on reinforcement learning: introduction and applications in industrial process control. Comput. Chem. Eng. 139, 106886 (2020).
Google Scholar
Maffettone, P. M. et al. Gaming the beamlines—employing reinforcement learning to maximize scientific outcomes at large-scale user facilities. Mach. Learn. Sci. Technol. 2, 025025 (2021).
Google Scholar
Martens, J. A., Perez-Pariente, J., Sastre, E., Corma, A. & Jacobs, P. A. Isomerization and disproportionation of m-xylene: selectivities induced by the void structure of the zeolite framework. Appl. Catal. 45, 85–101 (1988).
Google Scholar
Molyneux, S. & Goss, R. J. M. Fully aqueous and air-compatible cross-coupling of primary alkyl halides with aryl boronic species: a possible and facile method. ACS Catal. 13, 6365–6374 (2023).
Google Scholar
Jessop-Fabre, M. M. & Sonnenschein, N. Improving reproducibility in synthetic biology. Front. Bioeng. Biotechnol. 7, 18 (2019).
Google Scholar
Bai, J. et al. From platform to knowledge graph: evolution of laboratory automation. JACS Au 2, 292–309 (2022).
Google Scholar
Liskov, B. H. & Wing, J. M. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 1811–1841 (1994).
Google Scholar
Hähnle, R., Kamburjan, E. & Scaletta, M. in Active Object Languages: Current Research Trends (eds de Boer, F. et al.) 289–322 (Springer, 2024); https://doi.org/10.1007/978-3-031-51060-1_11
Giordano, G. et al. On the adoption and effects of source code reuse on defect proneness and maintenance effort. Empir. Softw. Eng. 29, 20 (2023).
Google Scholar
Bloch, J. Extra, extra – read all about it: nearly all binary searches and mergesorts are broken. Google Research (2006).
Hohpe, G. & Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions (Addison-Wesley, 2003).
Melloul, L. & Fox, A. Reusable functional composition patterns for Web services. In Proc. IEEE International Conference on Web Services (IEEE, 2004); https://ieeexplore.ieee.org/abstract/document/1314775
Tkaczyk, R. et al. Cataloging design patterns for internet of things artifact integration. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops) 1–6 (IEEE, 2018); https://doi.org/10.1109/ICCW.2018.8403758
Ramadas, A., Domingues, G., Dias, J. P., Aguiar, A. & Ferreira, H. S. Patterns for things that fail. In Proc. 24th Conference on Pattern Languages of Programs 1–10 (The Hillside Group, 2017).
Nesnas, I. A. D. in Software Engineering for Experimental Robotics (ed. Brugali, D.) 31–70 (Springer, 2007); https://doi.org/10.1007/978-3-540-68951-5_3
Rees-Hill, J. A. Error Handling Approaches in Programming Languages (Oberlin College, 2022).
Erwig, M. & Ren, D. Monadification of functional programs. Sci. Comput. Program. 52, 101–129 (2004).
Google Scholar
Salvaneschi, G., Ghezzi, C. & Pradella, M. Context-oriented programming: a software engineering perspective. J. Syst. Softw. 85, 1801–1817 (2012).
Google Scholar
Cardozo, N. & Mens, K. Programming language implementations for context-oriented self-adaptive systems. Inf. Softw. Technol. 143, 106789 (2022).
Google Scholar
Carbin, M., Misailovic, S. & Rinard, M. C. Verifying quantitative reliability for programs that execute on unreliable hardware. In Proc. 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications 33–52 (Association for Computing Machinery, 2013); https://doi.org/10.1145/2509136.2509546
Armstrong, J. Making Reliable Distributed Systems in the Presence of Software Errors. PhD thesis, Royal Institute of Technology, Stockholm (2003).
The Python Language Reference (Python Software Foundation, 2024); http://python.org
Fakhruldeen, H., Pizzuto, G., Glowacki, J. & Cooper, A. I. ARChemist: Autonomous Robotic Chemistry system architecture. In Proc. 2022 International Conference on Robotics and Automation (ICRA) 6013–6019 (IEEE, 2022); https://doi.org/10.1109/ICRA46639.2022.9811996
Darvish, K. et al. ORGANA: a robotic assistant for automated chemistry experimentation and characterization. Preprint at (2024).
Higgins, S. G., Nogiwa-Valdez, A. A. & Stevens, M. M. Considerations for implementing electronic laboratory notebooks in an academic research environment. Nat. Protoc. 17, 179–189 (2022).
Google Scholar
Statt, M. J. et al. ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery. Digit. Discov. 2, 1078–1088 (2023).
Google Scholar
Duke, R., McCoy, R., Risko, C. & Bursten, J. R. S. Promises and perils of big data: philosophical constraints on chemical ontologies. J. Am. Chem. Soc. (2024).
Google Scholar
Statt, M. J., Rohr, B. A., Guevarra, D., Suram, S. K. & Gregoire, J. M. Event-driven data management with cloud computing for extensible materials acceleration platforms. Digit. Discov. 3, 238–242 (2024).
Google Scholar
Jung, E., Cho, I. & Kang, S. M. An agent modeling for overcoming the heterogeneity in the IoT with design patterns. In Mobile, Ubiquitous, and Intelligent Computing: MUSIC 2013 (eds Park, J. J. et al.) 69–74 (Springer, 2014); https://doi.org/10.1007/978-3-642-40675-1_11
Green, D. V. S. et al. BRADSHAW: a system for automated molecular design. J. Comput. Aided Mol. Des. 34, 747–765 (2020).
Google Scholar
Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).
Google Scholar
XDL Documentation (Cronin Group, University of Glasgow, 2022); https://croningroup.gitlab.io/chemputer/xdl/
John, W. et al. The future of cloud computing: highly distributed with heterogeneous hardware. Ericsson Technology Review (12 May 2020).
Carbin, M. & Misailovic, S. in Foundations of Probabilistic Programming (eds Silva, A. et al.) 533–568 (Cambridge Univ. Press, 2020); https://doi.org/10.1017/9781108770750.016
Craven, M., Keenan, G., Khan, A., Lee M. & Wilbraham L. ChemIDE (Cronin Group, University of Glasgow, 2021); https://croningroup.gitlab.io/chemputer/xdlapp/
Delgado-Licona, F. & Abolhasani, M. Research acceleration in self-driving labs: technological roadmap toward accelerated materials and molecular discovery. Adv. Intell. Syst. 5, 2200331 (2023).
Google Scholar
Bennett, J. A. et al. Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory. Nat. Chem. Eng. 1, 240–250 (2024).
Google Scholar
Fitzpatrick, D. E., Battilocchio, C. & Ley, S. V. A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis. Org. Process Res. Dev. 20, 386–394 (2016).
Google Scholar
Li, J. et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11, 2046 (2020).
Google Scholar
Gromski, P. S., Granda, J. M. & Cronin, L. Universal chemical synthesis and discovery with ‘the Chemputer’. Trends Chem. 2, 4–12 (2020).
Google Scholar
Rahmanian, F. et al. Enabling modular autonomous feedback-loops in materials science through hierarchical experimental laboratory automation and orchestration. Adv. Mater. Interfaces 9, 2101987 (2022).
Google Scholar
Sim, M. et al. ChemOS 2.0: an orchestration architecture for chemical self-driving laboratories. Matter (2024).
Google Scholar
Ramírez, S. FastAPI (MIT, 2018); https://fastapi.tiangolo.com/
Consortium for Standardization in Lab Automation Standards. SiLA Rapid Integration (SILA, 2017).
Zhang, L., Merrifield, R., Deguet, A. & Yang, G.-Z. Powering the world’s robots—10 years of ROS. Sci. Robot. 2, eaar1868 (2017).
Google Scholar
Munroe, R. Standards. xkcd (2011); https://xkcd.com/927/
Volk, A. A. & Abolhasani, M. Performance metrics to unleash the power of self-driving labs in chemistry and materials science. Nat. Commun. 15, 1378 (2024).
Google Scholar
Volk, A. A. et al. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 14, 1403 (2023).
Google Scholar
Snapp, K. L. & Brown, K. A. Driving school for self-driving labs. Digit. Discov. 2, 1620–1629 (2023).
Google Scholar
Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).
Google Scholar
Epps, R. W., Volk, A. A., Ibrahim, M. Y. S. & Abolhasani, M. Universal self-driving laboratory for accelerated discovery of materials and molecules. Chem 7, 2541–2545 (2021).
Google Scholar
Yang, Z. et al. Exploring and unleashing the power of large language models in automated code translation. In Proc. ACM on Software Engineering 585–1608 (ACM, 2024).
Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525–535 (2024).
Google Scholar
Yoshikawa, N. et al. Large language models for chemistry robotics. Auton. Robot. 47, 1057–1086 (2023).
Google Scholar
Lunt, A. M. et al. Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry. Chem. Sci. 15, 2456–2463 (2024).
Google Scholar
Lunt, A. sgalunt/Thesis_Amy_Lunt (GitHub, 2023); https://github.com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20ARChemist%20code/Recipe%20Files/yumi_recipe.yaml
Clarke, E. tests/files/orgsyn_v83p0184a.xdl (GitLab, 2021); https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/tests/files/orgsyn_v83p0184a.xdl
autoprotocol-python (GitHub, 2023); https://github.com/autoprotocol/autoprotocol-python/tree/master
Laboratory of Artificial Intelligence. BioBlocks. GitHub (2020).
Felleisen, M. On the expressive power of programming languages. In ESOP ’90 (ed. Jones, N.) 134–151 (Springer, 1990); https://doi.org/10.1007/3-540-52592-0_60
Cunningham, K., Ericson, B. J., Agrawal Bejarano, R. & Guzdial, M. Avoiding the Turing tarpit: learning conversational programming by starting from code’s purpose. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–15 (Association for Computing Machinery, 2021); https://doi.org/10.1145/3411764.3445571
Meyer, B. Object-Oriented Software Construction (Pearson Education, 2023).
Fahland, D. et al. Declarative versus Imperative Process Modeling Languages: the issue of understandability. In Enterprise, Business-Process and Information Systems Modeling (eds Halpin, T. et al.) 353–366 (Springer, 2009); https://doi.org/10.1007/978-3-642-01862-6_29
Gongora, A. E. et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6, eaaz1708 (2020).
Google Scholar
MacLeod, B. P., Parlane, F. G. L., Brown, A. K., Hein, J. E. & Berlinguette, C. P. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022).
Google Scholar
link