Reproducibility in automated chemistry laboratories using computer science abstractions

0
Reproducibility in automated chemistry laboratories using computer science abstractions
  • Autoprotocol (Strateos Inc., 2021); https://autoprotocol.org/

  • Pendleton, I. M. et al. Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Commun. 9, 846–859 (2019).

    Article 
    CAS 

    Google Scholar 

  • Leonov, A. I. et al. An integrated self-optimizing programmable chemical synthesis and reaction engine. Nat. Commun. 15, 1240 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Documentation center. Emerald Cloud Lab (Emerald Cloud Lab, Inc, 2023).

  • Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schäfer, B. A., Poetz, D. & Kramer, G. W. Documenting laboratory workflows using the Analytical Information Markup Language. JALA 9, 375–381 (2004).

    Google Scholar 

  • Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots. Adv. Sci. 7, 1901957 (2020).

    Article 
    CAS 

    Google Scholar 

  • LabVIEW. LabVIEW Wiki (National Instruments, 2024) https://labviewwiki.org/wiki/LabVIEW

  • Bartley, B. et al. Building an open representation for biological protocols. ACM J. Emerg. Technol. Comput. Syst. 19, 1–21 (2023).

    Article 

    Google Scholar 

  • Ananthanarayanan, V. & Thies, W. Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4, 13 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, V., Irimia, J., Pau, I. & Rodríguez-Patón, A. BioBlocks: programming protocols in biology made easier. ACS Synth. Biol. 6, 1230–1232 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wierenga, R. P., Golas, S. M., Ho, W., Coley, C. W. & Esvelt, K. M. PyLabRobot: an open-source, hardware-agnostic interface for liquid-handling robots and accessories. Device 1, 100111 (2023).

    Article 

    Google Scholar 

  • Rauschen, R., Guy, M., Hein, J. E. & Cronin, L. Universal chemical programming language for robotic synthesis repeatability. Nat. Synth. 3, 488–496 (2024).

    Article 

    Google Scholar 

  • Leong, C. J. et al. An object-oriented framework to enable workflow evolution across materials acceleration platforms. Matter 5, 3124–3134 (2022).

    Article 

    Google Scholar 

  • Canty, R. B., Koscher, B. A., McDonald, M. A. & Jensen, K. F. Integrating autonomy into automated research platforms. Digit. Discov. 2, 1259–1268 (2023).

    Article 

    Google Scholar 

  • Alexandron, G., Armoni, M., Gordon, M. & Harel, D. Scenario-based programming: reducing the cognitive load, fostering abstract thinking. In Companion Proc. 36th International Conference on Software Engineering 311–320 (Association for Computing Machinery, 2014); https://doi.org/10.1145/2591062.2591167

  • Fidler, F. & Wilcox, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021).

  • Mandel, J. Repeatability and reproducibility. J. Qual. Technol. 4, 74–85 (1972).

    Article 

    Google Scholar 

  • Feitelson, D. G. From repeatability to reproducibility and corroboration. ACM SIGOPS Oper. Syst. Rev. 49, 3–11 (2015).

    Article 

    Google Scholar 

  • Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS Au (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bateni, F. et al. Smart Dope: a self-driving fluidic lab for accelerated development of doped perovskite quantum dots. Adv. Energy Mater. 14, 2302303 (2024).

    Article 
    CAS 

    Google Scholar 

  • Leeman, J. et al. Challenges in high-throughput inorganic materials prediction and autonomous synthesis. PRX Energy 3, 011002 (2024).

    Article 

    Google Scholar 

  • Sayre, F. & Riegelman, A. The reproducibility crisis and academic libraries. Coll. Res. Libr. (2018).

    Article 

    Google Scholar 

  • Leins, D. A., Haase, S. B., Eslami, M., Schrier, J. & Freeman, J. T. Collaborative methods to enhance reproducibility and accelerate discovery. Digit. Discov. 2, 12–27 (2023).

    Article 

    Google Scholar 

  • Liskov, B. & Zilles, S. Programming with abstract data types. ACM SIGPLAN Not. 9, 50–59 (1974).

    Article 

    Google Scholar 

  • Parnas, D. L. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 1053–1058 (1972).

    Article 

    Google Scholar 

  • Parnas, D. L., Shore, J. E. & Weiss, D. Abstract types defined as classes of variables. ACM SIGPLAN Not. 11, 149–154 (1976).

    Article 

    Google Scholar 

  • Meyer, B. Applying ‘design by contract’. Computer 25, 40–51 (1992).

    Article 

    Google Scholar 

  • Stevens, W. P., Myers, G. J. & Constantine, L. L. Structured design. IBM Syst. J. 13, 115–139 (1974).

    Article 

    Google Scholar 

  • Taube-Schock, C., Walker, R. J. & Witten, I. H. Can we avoid high coupling? In ECOOP 2011 – Object-Oriented Programming (ed. Mezini, M.) 204–228 (Springer, 2011); https://doi.org/10.1007/978-3-642-22655-7_10

  • Christensen, M. et al. Automation isn’t automatic. Chem. Sci. 12, 15473–15490 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koscher, B. A. et al. Autonomous, multiproperty-driven molecular discovery: from predictions to measurements and back. Science 382, eadi1407 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karafiludis, S., Ryll, T. W., Buzanich, A. G., Emmerling, F. & Stawski, T. M. Phase stability studies on transition metal phosphates aided by an automated synthesis. CrystEngComm 25, 4333–4344 (2023).

    Article 
    CAS 

    Google Scholar 

  • D’Agostino, C. et al. Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chem. Eur. J. 18, 14426–14433 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Pomberger, A. et al. Automated pH adjustment driven by robotic workflows and active machine learning. Chem. Eng. J. 451, 139099 (2023).

    Article 
    CAS 

    Google Scholar 

  • Nian, R., Liu, J. & Huang, B. A review on reinforcement learning: introduction and applications in industrial process control. Comput. Chem. Eng. 139, 106886 (2020).

    Article 
    CAS 

    Google Scholar 

  • Maffettone, P. M. et al. Gaming the beamlines—employing reinforcement learning to maximize scientific outcomes at large-scale user facilities. Mach. Learn. Sci. Technol. 2, 025025 (2021).

    Article 

    Google Scholar 

  • Martens, J. A., Perez-Pariente, J., Sastre, E., Corma, A. & Jacobs, P. A. Isomerization and disproportionation of m-xylene: selectivities induced by the void structure of the zeolite framework. Appl. Catal. 45, 85–101 (1988).

    Article 
    CAS 

    Google Scholar 

  • Molyneux, S. & Goss, R. J. M. Fully aqueous and air-compatible cross-coupling of primary alkyl halides with aryl boronic species: a possible and facile method. ACS Catal. 13, 6365–6374 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jessop-Fabre, M. M. & Sonnenschein, N. Improving reproducibility in synthetic biology. Front. Bioeng. Biotechnol. 7, 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, J. et al. From platform to knowledge graph: evolution of laboratory automation. JACS Au 2, 292–309 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liskov, B. H. & Wing, J. M. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 1811–1841 (1994).

    Article 

    Google Scholar 

  • Hähnle, R., Kamburjan, E. & Scaletta, M. in Active Object Languages: Current Research Trends (eds de Boer, F. et al.) 289–322 (Springer, 2024); https://doi.org/10.1007/978-3-031-51060-1_11

  • Giordano, G. et al. On the adoption and effects of source code reuse on defect proneness and maintenance effort. Empir. Softw. Eng. 29, 20 (2023).

    Article 

    Google Scholar 

  • Bloch, J. Extra, extra – read all about it: nearly all binary searches and mergesorts are broken. Google Research (2006).

  • Hohpe, G. & Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions (Addison-Wesley, 2003).

  • Melloul, L. & Fox, A. Reusable functional composition patterns for Web services. In Proc. IEEE International Conference on Web Services (IEEE, 2004); https://ieeexplore.ieee.org/abstract/document/1314775

  • Tkaczyk, R. et al. Cataloging design patterns for internet of things artifact integration. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops) 1–6 (IEEE, 2018); https://doi.org/10.1109/ICCW.2018.8403758

  • Ramadas, A., Domingues, G., Dias, J. P., Aguiar, A. & Ferreira, H. S. Patterns for things that fail. In Proc. 24th Conference on Pattern Languages of Programs 1–10 (The Hillside Group, 2017).

  • Nesnas, I. A. D. in Software Engineering for Experimental Robotics (ed. Brugali, D.) 31–70 (Springer, 2007); https://doi.org/10.1007/978-3-540-68951-5_3

  • Rees-Hill, J. A. Error Handling Approaches in Programming Languages (Oberlin College, 2022).

  • Erwig, M. & Ren, D. Monadification of functional programs. Sci. Comput. Program. 52, 101–129 (2004).

    Article 

    Google Scholar 

  • Salvaneschi, G., Ghezzi, C. & Pradella, M. Context-oriented programming: a software engineering perspective. J. Syst. Softw. 85, 1801–1817 (2012).

    Article 

    Google Scholar 

  • Cardozo, N. & Mens, K. Programming language implementations for context-oriented self-adaptive systems. Inf. Softw. Technol. 143, 106789 (2022).

    Article 

    Google Scholar 

  • Carbin, M., Misailovic, S. & Rinard, M. C. Verifying quantitative reliability for programs that execute on unreliable hardware. In Proc. 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications 33–52 (Association for Computing Machinery, 2013); https://doi.org/10.1145/2509136.2509546

  • Armstrong, J. Making Reliable Distributed Systems in the Presence of Software Errors. PhD thesis, Royal Institute of Technology, Stockholm (2003).

  • The Python Language Reference (Python Software Foundation, 2024); http://python.org

  • Fakhruldeen, H., Pizzuto, G., Glowacki, J. & Cooper, A. I. ARChemist: Autonomous Robotic Chemistry system architecture. In Proc. 2022 International Conference on Robotics and Automation (ICRA) 6013–6019 (IEEE, 2022); https://doi.org/10.1109/ICRA46639.2022.9811996

  • Darvish, K. et al. ORGANA: a robotic assistant for automated chemistry experimentation and characterization. Preprint at (2024).

  • Higgins, S. G., Nogiwa-Valdez, A. A. & Stevens, M. M. Considerations for implementing electronic laboratory notebooks in an academic research environment. Nat. Protoc. 17, 179–189 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Statt, M. J. et al. ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery. Digit. Discov. 2, 1078–1088 (2023).

    Article 
    CAS 

    Google Scholar 

  • Duke, R., McCoy, R., Risko, C. & Bursten, J. R. S. Promises and perils of big data: philosophical constraints on chemical ontologies. J. Am. Chem. Soc. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Statt, M. J., Rohr, B. A., Guevarra, D., Suram, S. K. & Gregoire, J. M. Event-driven data management with cloud computing for extensible materials acceleration platforms. Digit. Discov. 3, 238–242 (2024).

    Article 

    Google Scholar 

  • Jung, E., Cho, I. & Kang, S. M. An agent modeling for overcoming the heterogeneity in the IoT with design patterns. In Mobile, Ubiquitous, and Intelligent Computing: MUSIC 2013 (eds Park, J. J. et al.) 69–74 (Springer, 2014); https://doi.org/10.1007/978-3-642-40675-1_11

  • Green, D. V. S. et al. BRADSHAW: a system for automated molecular design. J. Comput. Aided Mol. Des. 34, 747–765 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • XDL Documentation (Cronin Group, University of Glasgow, 2022); https://croningroup.gitlab.io/chemputer/xdl/

  • John, W. et al. The future of cloud computing: highly distributed with heterogeneous hardware. Ericsson Technology Review (12 May 2020).

  • Carbin, M. & Misailovic, S. in Foundations of Probabilistic Programming (eds Silva, A. et al.) 533–568 (Cambridge Univ. Press, 2020); https://doi.org/10.1017/9781108770750.016

  • Craven, M., Keenan, G., Khan, A., Lee M. & Wilbraham L. ChemIDE (Cronin Group, University of Glasgow, 2021); https://croningroup.gitlab.io/chemputer/xdlapp/

  • Delgado-Licona, F. & Abolhasani, M. Research acceleration in self-driving labs: technological roadmap toward accelerated materials and molecular discovery. Adv. Intell. Syst. 5, 2200331 (2023).

    Article 

    Google Scholar 

  • Bennett, J. A. et al. Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory. Nat. Chem. Eng. 1, 240–250 (2024).

    Article 

    Google Scholar 

  • Fitzpatrick, D. E., Battilocchio, C. & Ley, S. V. A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis. Org. Process Res. Dev. 20, 386–394 (2016).

    Article 
    CAS 

    Google Scholar 

  • Li, J. et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11, 2046 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gromski, P. S., Granda, J. M. & Cronin, L. Universal chemical synthesis and discovery with ‘the Chemputer’. Trends Chem. 2, 4–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rahmanian, F. et al. Enabling modular autonomous feedback-loops in materials science through hierarchical experimental laboratory automation and orchestration. Adv. Mater. Interfaces 9, 2101987 (2022).

    Article 

    Google Scholar 

  • Sim, M. et al. ChemOS 2.0: an orchestration architecture for chemical self-driving laboratories. Matter (2024).

    Article 

    Google Scholar 

  • Ramírez, S. FastAPI (MIT, 2018); https://fastapi.tiangolo.com/

  • Consortium for Standardization in Lab Automation Standards. SiLA Rapid Integration (SILA, 2017).

  • Zhang, L., Merrifield, R., Deguet, A. & Yang, G.-Z. Powering the world’s robots—10 years of ROS. Sci. Robot. 2, eaar1868 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Munroe, R. Standards. xkcd (2011); https://xkcd.com/927/

  • Volk, A. A. & Abolhasani, M. Performance metrics to unleash the power of self-driving labs in chemistry and materials science. Nat. Commun. 15, 1378 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volk, A. A. et al. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 14, 1403 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snapp, K. L. & Brown, K. A. Driving school for self-driving labs. Digit. Discov. 2, 1620–1629 (2023).

    Article 
    CAS 

    Google Scholar 

  • Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

    Article 

    Google Scholar 

  • Epps, R. W., Volk, A. A., Ibrahim, M. Y. S. & Abolhasani, M. Universal self-driving laboratory for accelerated discovery of materials and molecules. Chem 7, 2541–2545 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, Z. et al. Exploring and unleashing the power of large language models in automated code translation. In Proc. ACM on Software Engineering 585–1608 (ACM, 2024).

  • Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525–535 (2024).

    Article 

    Google Scholar 

  • Yoshikawa, N. et al. Large language models for chemistry robotics. Auton. Robot. 47, 1057–1086 (2023).

    Article 

    Google Scholar 

  • Lunt, A. M. et al. Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry. Chem. Sci. 15, 2456–2463 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lunt, A. sgalunt/Thesis_Amy_Lunt (GitHub, 2023); https://github.com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20ARChemist%20code/Recipe%20Files/yumi_recipe.yaml

  • Clarke, E. tests/files/orgsyn_v83p0184a.xdl (GitLab, 2021); https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/tests/files/orgsyn_v83p0184a.xdl

  • autoprotocol-python (GitHub, 2023); https://github.com/autoprotocol/autoprotocol-python/tree/master

  • Laboratory of Artificial Intelligence. BioBlocks. GitHub (2020).

  • Felleisen, M. On the expressive power of programming languages. In ESOP ’90 (ed. Jones, N.) 134–151 (Springer, 1990); https://doi.org/10.1007/3-540-52592-0_60

  • Cunningham, K., Ericson, B. J., Agrawal Bejarano, R. & Guzdial, M. Avoiding the Turing tarpit: learning conversational programming by starting from code’s purpose. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–15 (Association for Computing Machinery, 2021); https://doi.org/10.1145/3411764.3445571

  • Meyer, B. Object-Oriented Software Construction (Pearson Education, 2023).

  • Fahland, D. et al. Declarative versus Imperative Process Modeling Languages: the issue of understandability. In Enterprise, Business-Process and Information Systems Modeling (eds Halpin, T. et al.) 353–366 (Springer, 2009); https://doi.org/10.1007/978-3-642-01862-6_29

  • Gongora, A. E. et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6, eaaz1708 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacLeod, B. P., Parlane, F. G. L., Brown, A. K., Hein, J. E. & Berlinguette, C. P. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *