Rapid and inexpensive synthesis of liter-scale SiC aerogels

0
Rapid and inexpensive synthesis of liter-scale SiC aerogels
  • Hagedorn, K. et al. Catalytically doped semiconductors for chemical gas sensing: aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase. Adv. Funct. Mater. 26, 3424–3437 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ou, H., Yang, P., Lin, L., Anpo, M. & Wang, X. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem. Int. Ed. 56, 10905–10910 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J. et al. “Stiff–Soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29, 1806407 (2019).

    Article 

    Google Scholar 

  • Li, L. et al. Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022).

    Article 

    Google Scholar 

  • Fan, M., Wen, T., Chen, S., Dong, Y. & Wang, C. Perspectives toward damage‐tolerant nanostructure ceramics. Adv. Sci. 11, 2309834 (2024).

    Article 
    CAS 

    Google Scholar 

  • Xu, X. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, J. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606, 909–916 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Si, Y. et al. Ultralight biomass‐derived carbonaceous nanofibrous aerogels with superelasticity and high pressure‐sensitivity. Adv. Mater. 28, 9512–9518 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 42, 162–177 (2021).

    Article 
    CAS 

    Google Scholar 

  • Han, X. et al. Bioinspired synthesis of monolithic and layered aerogels. Adv. Mater. 30, 1706294 (2018).

    Article 

    Google Scholar 

  • Guo, P. et al. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 16, 6625–6633 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Su, L. et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6, eaay6689 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, L. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 15, 18354–18362 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, X. et al. Microstructure characterization and thermal performance of reticulated SiC skeleton reinforced silica aerogel composites. Compos. Part B Eng. 177, 107409 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, S. et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch. Carbon 45, 2092–2097 (2007).

    Article 
    CAS 

    Google Scholar 

  • Yan, M. et al. Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem. Eng. J. 455, 140616 (2023).

    Article 
    CAS 

    Google Scholar 

  • Dai, D., Lan, X. & Wang, Z. Hierarchical carbon fiber reinforced SiC/C aerogels with efficient electromagnetic wave absorption properties. Compos. Part B Eng. 248, 110376 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zani, A., Dellasega, D., Russo, V. & Passoni, M. Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358–365 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chabi, S. et al. Ultralight, strong, three-dimensional SiC structures. ACS Nano 10, 1871–1876 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, B. et al. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13, 11603–11612 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, L. et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 467, 143518 (2023).

    Article 
    CAS 

    Google Scholar 

  • Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merzhanov, A. G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 14, 1779 (2004).

    Article 
    CAS 

    Google Scholar 

  • Merzhanov, A. G. et al. Influence of microgravity on self-propagating high-temperature synthesis of refractory inorganic compounds. Cosm. Res. 39, 210–223 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, K., Yang, Y., Lin, Z.-M., Li, J.-T. & Du, J.-S. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater. Res. Bull. 42, 1625–1632 (2007).

    Article 
    CAS 

    Google Scholar 

  • Li, C. et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 29, 1604690 (2017).

    Article 

    Google Scholar 

  • Pampuch, R., Stobierski, L., Lis, J. & Rczka, M. Solid combustion synthesis of β-SiC powder. Mat. Res. Bull. 22, 1225–1231 (1987).

    Article 
    CAS 

    Google Scholar 

  • Nersisyan, G. A., Nikogosov, V. N., Kharatyan, S. L. & Merzhanov, A. G. Chemical transformation mechanism and combustion regimes in the system silicon-carbon-fluoroplastic. Combust. Explos. Shock Waves 27, 720–724 (1992).

    Article 

    Google Scholar 

  • Huczko, A. et al. Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B. 109, 16244–16251 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dąbrowska, A., Soszyński, M. & Huczko, A. Toward green chemistry: a new approach to the synthesis of semiconducting SiC nanowires. Phys. Status Solidi B 250, 2713–2716 (2013).

    Article 
    ADS 

    Google Scholar 

  • Vorotilo, S., Potanin, A. Y., Iatsyuk, I. V. & Levashov, E. A. SHS of silicon-based ceramics for the high-temperature applications. Adv. Eng. Mater. 20, 1800200 (2018).

    Article 

    Google Scholar 

  • Shteinberg, A. S., Shcherbakov, V. A., Martynov, V. V., Mikhoyan, M. Z. & Merzhanov, A. G. Self-propagating high-temperature synthesis of high-porosity materials under weightlessness. Sov. Phys.-Dokl. 36, 385–387 (1991).

    ADS 

    Google Scholar 

  • Liu, G. et al. Combustion synthesis of nanosized β-SiC powder on a large scale. J. Phys. Chem. C. 112, 6285–6292 (2008).

    Article 
    CAS 

    Google Scholar 

  • Deshpande, K., Mukasyan, A. & Varma, A. Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater. 16, 4896–4904 (2004).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Preparation of hollow SiC spheres by combustion synthesis. J. Am. Ceram. Soc. 105, 5373–5379 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vorotilo, S., Potanin, A. Y., Loginov, P. A., Shvindina, N. V. & Levashov, E. A. Combustion synthesis of SiC-based ceramics reinforced by discrete carbon fibers with in situ grown SiC nanowires. Ceram. Int. 46, 7861–7870 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhuang, Z. et al. Improved reactivity and energy release performance of core-shell structured fuel-rich Si/PTFE energetic composites. Combust. Flame 255, 112889 (2023).

    Article 
    CAS 

    Google Scholar 

  • Mukasyan, A. S. Combustion synthesis of silicon carbide. In properties and applications of silicon carbide (ed. Gerhardt, R.) (InTech, 2011). https://doi.org/10.5772/15620.

  • Manukyan, K. V., Rouvimov, S., Wolf, E. E. & Mukasyan, A. S. Combustion synthesis of graphene materials. Carbon 62, 302–311 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liang, C. & Wang, Z. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yan, M. et al. Implementing an air suction effect induction strategy to create super thermally insulating and superelastic SiC aerogels. Small 18, 2201039 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, H. et al. Large-scale fabrication of high-performing single-crystal SiC nanowire sponges using natural loofah. ACS Sustain. Chem. Eng. 11, 2554–2563 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Liang, P. et al. Green preparation of 3D large-sized SiC nanowire aerogels. Mater. Lett. 284, 129014 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ding, C., Hu, D., He, X., Lai, Y. & Shao, G. Fabrication and microstructure evolution of monolithic bridged polysilsesquioxane-derived SiC ceramic aerogels. Ceram. Int. 48, 25833–25839 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X., Gao, L., Zhou, W., Wang, Y. & Lu, Y. Novel 2D metamaterials with negative Poisson’s ratio and negative thermal expansion. Extrem. Mech. Lett. 30, 100498 (2019).

    Article 

    Google Scholar 

  • Zhang, Q. et al. Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28, 2229–2237 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gardner, G. B., Venkataraman, D., Moore, J. S. & Lee, S. Spontaneous assembly of a hinged coordination network. Nature 374, 792–795 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Peng, X.-L. & Bargmann, S. A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. Int. J. Mech. Sci. 190, 106021 (2021).

    Article 

    Google Scholar 

  • Kistler, S. S. Coherent expanded aerogels and jellies. Nature 127, 741–741 (1931).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cai, H. et al. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations. J. Eur. Ceram. Soc. 40, 127–135 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, L. et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 40, 329–336 (2021).

    Article 

    Google Scholar 

  • Wang, Y. et al. Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture. Nat. Synth. 1, 975–986 (2022).

    Article 
    ADS 

    Google Scholar 

  • Lu, D. et al. Ultrastrong, elastic, and fatigue‐resistant SiC nanowires network. J. Am. Ceram. Soc. 105, 2783–2790 (2022).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *