Rapid and inexpensive synthesis of liter-scale SiC aerogels
Hagedorn, K. et al. Catalytically doped semiconductors for chemical gas sensing: aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase. Adv. Funct. Mater. 26, 3424–3437 (2016).
Google Scholar
Ou, H., Yang, P., Lin, L., Anpo, M. & Wang, X. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem. Int. Ed. 56, 10905–10910 (2017).
Google Scholar
Zhang, J. et al. “Stiff–Soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29, 1806407 (2019).
Google Scholar
Li, L. et al. Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 54, 72–82 (2022).
Google Scholar
Fan, M., Wen, T., Chen, S., Dong, Y. & Wang, C. Perspectives toward damage‐tolerant nanostructure ceramics. Adv. Sci. 11, 2309834 (2024).
Google Scholar
Xu, X. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019).
Google Scholar
Guo, J. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606, 909–916 (2022).
Google Scholar
Si, Y. et al. Ultralight biomass‐derived carbonaceous nanofibrous aerogels with superelasticity and high pressure‐sensitivity. Adv. Mater. 28, 9512–9518 (2016).
Google Scholar
Xu, X. et al. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 42, 162–177 (2021).
Google Scholar
Han, X. et al. Bioinspired synthesis of monolithic and layered aerogels. Adv. Mater. 30, 1706294 (2018).
Google Scholar
Guo, P. et al. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 16, 6625–6633 (2022).
Google Scholar
Su, L. et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6, eaay6689 (2020).
Google Scholar
Su, L. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 15, 18354–18362 (2021).
Google Scholar
Ye, X. et al. Microstructure characterization and thermal performance of reticulated SiC skeleton reinforced silica aerogel composites. Compos. Part B Eng. 177, 107409 (2019).
Google Scholar
Li, S. et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch. Carbon 45, 2092–2097 (2007).
Google Scholar
Yan, M. et al. Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem. Eng. J. 455, 140616 (2023).
Google Scholar
Dai, D., Lan, X. & Wang, Z. Hierarchical carbon fiber reinforced SiC/C aerogels with efficient electromagnetic wave absorption properties. Compos. Part B Eng. 248, 110376 (2023).
Google Scholar
Zani, A., Dellasega, D., Russo, V. & Passoni, M. Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358–365 (2013).
Google Scholar
Chabi, S. et al. Ultralight, strong, three-dimensional SiC structures. ACS Nano 10, 1871–1876 (2016).
Google Scholar
Ren, B. et al. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 13, 11603–11612 (2019).
Google Scholar
Song, L. et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 467, 143518 (2023).
Google Scholar
Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).
Google Scholar
Merzhanov, A. G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 14, 1779 (2004).
Google Scholar
Merzhanov, A. G. et al. Influence of microgravity on self-propagating high-temperature synthesis of refractory inorganic compounds. Cosm. Res. 39, 210–223 (2001).
Google Scholar
Yang, K., Yang, Y., Lin, Z.-M., Li, J.-T. & Du, J.-S. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater. Res. Bull. 42, 1625–1632 (2007).
Google Scholar
Li, C. et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 29, 1604690 (2017).
Google Scholar
Pampuch, R., Stobierski, L., Lis, J. & Rczka, M. Solid combustion synthesis of β-SiC powder. Mat. Res. Bull. 22, 1225–1231 (1987).
Google Scholar
Nersisyan, G. A., Nikogosov, V. N., Kharatyan, S. L. & Merzhanov, A. G. Chemical transformation mechanism and combustion regimes in the system silicon-carbon-fluoroplastic. Combust. Explos. Shock Waves 27, 720–724 (1992).
Google Scholar
Huczko, A. et al. Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B. 109, 16244–16251 (2005).
Google Scholar
Dąbrowska, A., Soszyński, M. & Huczko, A. Toward green chemistry: a new approach to the synthesis of semiconducting SiC nanowires. Phys. Status Solidi B 250, 2713–2716 (2013).
Google Scholar
Vorotilo, S., Potanin, A. Y., Iatsyuk, I. V. & Levashov, E. A. SHS of silicon-based ceramics for the high-temperature applications. Adv. Eng. Mater. 20, 1800200 (2018).
Google Scholar
Shteinberg, A. S., Shcherbakov, V. A., Martynov, V. V., Mikhoyan, M. Z. & Merzhanov, A. G. Self-propagating high-temperature synthesis of high-porosity materials under weightlessness. Sov. Phys.-Dokl. 36, 385–387 (1991).
Google Scholar
Liu, G. et al. Combustion synthesis of nanosized β-SiC powder on a large scale. J. Phys. Chem. C. 112, 6285–6292 (2008).
Google Scholar
Deshpande, K., Mukasyan, A. & Varma, A. Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater. 16, 4896–4904 (2004).
Google Scholar
Wang, L. et al. Preparation of hollow SiC spheres by combustion synthesis. J. Am. Ceram. Soc. 105, 5373–5379 (2022).
Google Scholar
Vorotilo, S., Potanin, A. Y., Loginov, P. A., Shvindina, N. V. & Levashov, E. A. Combustion synthesis of SiC-based ceramics reinforced by discrete carbon fibers with in situ grown SiC nanowires. Ceram. Int. 46, 7861–7870 (2020).
Google Scholar
Zhuang, Z. et al. Improved reactivity and energy release performance of core-shell structured fuel-rich Si/PTFE energetic composites. Combust. Flame 255, 112889 (2023).
Google Scholar
Mukasyan, A. S. Combustion synthesis of silicon carbide. In properties and applications of silicon carbide (ed. Gerhardt, R.) (InTech, 2011). https://doi.org/10.5772/15620.
Manukyan, K. V., Rouvimov, S., Wolf, E. E. & Mukasyan, A. S. Combustion synthesis of graphene materials. Carbon 62, 302–311 (2013).
Google Scholar
Liang, C. & Wang, Z. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019).
Google Scholar
Yan, M. et al. Implementing an air suction effect induction strategy to create super thermally insulating and superelastic SiC aerogels. Small 18, 2201039 (2022).
Google Scholar
Li, H. et al. Large-scale fabrication of high-performing single-crystal SiC nanowire sponges using natural loofah. ACS Sustain. Chem. Eng. 11, 2554–2563 (2023).
Google Scholar
Liang, P. et al. Green preparation of 3D large-sized SiC nanowire aerogels. Mater. Lett. 284, 129014 (2021).
Google Scholar
Ding, C., Hu, D., He, X., Lai, Y. & Shao, G. Fabrication and microstructure evolution of monolithic bridged polysilsesquioxane-derived SiC ceramic aerogels. Ceram. Int. 48, 25833–25839 (2022).
Google Scholar
Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).
Google Scholar
Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).
Google Scholar
Li, X., Gao, L., Zhou, W., Wang, Y. & Lu, Y. Novel 2D metamaterials with negative Poisson’s ratio and negative thermal expansion. Extrem. Mech. Lett. 30, 100498 (2019).
Google Scholar
Zhang, Q. et al. Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28, 2229–2237 (2016).
Google Scholar
Gardner, G. B., Venkataraman, D., Moore, J. S. & Lee, S. Spontaneous assembly of a hinged coordination network. Nature 374, 792–795 (1995).
Google Scholar
Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).
Google Scholar
Peng, X.-L. & Bargmann, S. A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. Int. J. Mech. Sci. 190, 106021 (2021).
Google Scholar
Kistler, S. S. Coherent expanded aerogels and jellies. Nature 127, 741–741 (1931).
Google Scholar
Cai, H. et al. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations. J. Eur. Ceram. Soc. 40, 127–135 (2020).
Google Scholar
Li, L. et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 40, 329–336 (2021).
Google Scholar
Wang, Y. et al. Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture. Nat. Synth. 1, 975–986 (2022).
Google Scholar
Lu, D. et al. Ultrastrong, elastic, and fatigue‐resistant SiC nanowires network. J. Am. Ceram. Soc. 105, 2783–2790 (2022).
Google Scholar
link