Predicting the stereoselectivity of chemical reactions by composite machine learning method

Li, J. et al. Predicting the stereoselectivity of chemical transformations by machine learning. arXiv preprint arXiv:2110.05671 (2021).
Reid, J. P. & Sigman, M. S. Holistic prediction of enantioselectivity in asymmetric catalysis. Nature 571, 343–348 (2019).
Google Scholar
Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications (Wiley, 2010).
Google Scholar
Silverio, D. L. et al. Simple organic molecules as catalysts for enantioselective synthesis of amines and alcohols. Nature 494, 216–221 (2013).
Google Scholar
Moon, S., Chatterjee, S., Seeberger, P. H. & Gilmore, K. Predicting glycosylation stereoselectivity using machine learning. Chem. Sci. 12, 2931–2939 (2021).
Google Scholar
Yu, X. Prediction of enantioselectivity in thiol addition to imines catalyzed by chiral phosphoric acids. J. Phys. Org. Chem. 35, e4338 (2022).
Google Scholar
Gao, B. et al. A machine learning model for predicting enantioselectivity in hypervalent iodine (iii) catalyzed asymmetric phenolic dearomatizations. CCS Chem. 1–14 (2024).
Hoque, A. & Sunoj, R. B. Deep learning for enantioselectivity predictions in catalytic asymmetric \(\beta \)-c-h bond activation reactions. Digital Discov. 1, 926–940 (2022).
Google Scholar
Hong, Y., Welch, C. J., Piras, P. & Tang, H. Enhanced structure-based prediction of chiral stationary phases for chromatographic enantioseparation from 3D molecular conformations. Analytical Chem. (2024).
Ferraz-Caetano, J., Teixeira, F. & Cordeiro, M. N. D. Explainable supervised machine learning model to predict solvation gibbs energy. J. Chem. Inf. Model. 64, 2250–2262 (2024).
Google Scholar
Ward, L. et al. Graph-based approaches for predicting solvation energy in multiple solvents: open datasets and machine learning models. J. Phys. Chem. A 125, 5990–5998 (2021).
Google Scholar
Low, K., Coote, M. L. & Izgorodina, E. I. Explainable solvation free energy prediction combining graph neural networks with chemical intuition. J. Chem. Inf. Model. 62, 5457–5470 (2022).
Google Scholar
Lim, H. & Jung, Y. MLSolvA: Solvation free energy prediction from pairwise atomistic interactions by machine learning. J. Cheminform. 13, 56 (2021).
Google Scholar
Pathak, Y., Mehta, S. & Priyakumar, U. D. Learning atomic interactions through solvation free energy prediction using graph neural networks. J. Chem. Inf. Model. 61, 689–698 (2021).
Google Scholar
Solomons, T. G. & Fryhle, C. B. Organic Chemistry (Wiley, 2008).
Terada, M., Machioka, K. & Sorimachi, K. High substrate/catalyst organocatalysis by a chiral brønsted acid for an enantioselective aza-ene-type reaction. Angew. Chem. Int. Ed. 45, 2254–2257 (2006).
Google Scholar
Chen, M.-W. et al. Organocatalytic asymmetric reduction of fluorinated alkynyl ketimines. J. Org. Chem. 83, 8688–8694 (2018).
Google Scholar
Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science 363, eaau5631 (2019).
Google Scholar
Dudley, R. The Shapiro–Wilk test for normality (2023).
Stevens, J. P. Intermediate Statistics: A Modern Approach (Routledge, 2013).
Google Scholar
Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat Methodol. 58, 267–288 (1996).
Google Scholar
Loh, W.-Y. Classification and regression trees. Wiley Interdiscipl. Rev. Data Mining Knowl. Discov. 1, 14–23 (2011).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Drucker, H. Improving regressors using boosting techniques. In Icml, vol. 97, 107–115 (Citeseer, 1997).
Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004).
Google Scholar
Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227 (1990).
Google Scholar
Tsiambaos, G. & Sabatakakis, N. Considerations on strength of intact sedimentary rocks. Eng. Geol. 72, 261–273 (2004).
Google Scholar
Xu, Q.-S. & Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 56, 1–11 (2001).
Google Scholar
Frazier, P. I. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 (2018).
Kaneko, H. Cross-validated permutation feature importance considering correlation between features. Anal. Sci. Adv. 3, 278–287 (2022).
Google Scholar
scikitlearn. sklearn.svm.svc. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
Zimmerman, D. W. Correcting two-sample “z” and “t” tests for correlation: An alternative to one-sample tests on difference scores. Psicologica Int. J. Methodol. Exp. Psychol. 33, 391–418 (2012).
Hogg, R. V., Tanis, E. A. & Zimmerman, D. L. Probability and Statistical Inference, vol. 993 (Macmillan, 1977).
Walker, M. A. Libretexts. https://chem.libretexts.org.
Shi, H., Yang, N., Yang, X. & Tang, H. Clarifying relationship between pm2.5 concentrations and spatiotemporal predictors using multi-way partial dependence plots. Remote Sens. 15, 358 (2023).
Google Scholar
Buchanan, R., Whiting, R. & Damert, W. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14, 313–326 (1997).
Google Scholar
McLachlan, G. J. & Basford, K. E. Mixture Models: Inference and Applications to Clustering, vol. 38 (M. Dekker, 1988).
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–22 (1977).
Google Scholar
Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: Background, derivation, and applications. Wiley Interdiscipl. Rev. Comput. Stat. 4, 199–203 (2012).
Google Scholar
link