Observational evidence reveals the significance of nocturnal chemistry in seasonal secondary organic aerosol formation
Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).
Google Scholar
Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801 (2007).
Google Scholar
Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236 (2009).
Google Scholar
Mahowald, N. Aerosol indirect effect on biogeochemical cycles and climate. Science 334, 794–796 (2011).
Google Scholar
Nel, A. Air pollution-related illness: effects of particles. Science 308, 804–806 (2005).
Google Scholar
Ziemann, P. J. & Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41, 6582–6605 (2012).
Google Scholar
Hodzic, A. et al. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys. 16, 7917–7941 (2016).
Google Scholar
Zhang, Q. et al. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal. Bioanal. Chem. 401, 3045–3067 (2011).
Google Scholar
Crippa, M. et al. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos. Chem. Phys. 13, 961–981 (2013).
Google Scholar
Mohr, C. et al. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos. Chem. Phys. 12, 1649–1665 (2012).
Google Scholar
Canonaco, F., Slowik, J. G., Baltensperger, U. & Prévôt, A. S. H. Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmos. Chem. Phys. 15, 6993–7002 (2015).
Google Scholar
Sun, Y. L. et al. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmos. Chem. Phys. 12, 8537–8551 (2012).
Google Scholar
Xu, L. et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl Acad. Sci. USA 112, E4506–E4507 (2015).
Google Scholar
Chen, G. et al. Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window. Atmos. Chem. Phys. 21, 15081–15101 (2021).
Google Scholar
Ng, N. L. et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem. Phys. 8, 4117–4140 (2008).
Google Scholar
Fry, J. L. et al. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmos. Chem. Phys. 9, 1431–1449 (2009).
Google Scholar
Hoyle, C. R., Berntsen, T., Myhre, G. & Isaksen, I. S. A. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2. Atmos. Chem. Phys. 7, 5675–5694 (2007).
Google Scholar
Pye, H. O. T., Chan, A. W. H., Barkley, M. P. & Seinfeld, J. H. Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 10, 11261–11276 (2010).
Google Scholar
Zhang, Y. et al. Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmos. Chem. Phys. 19, 14755–14776 (2019).
Google Scholar
Saarikoski, S. et al. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. Atmos. Chem. Phys. 12, 8401–8421 (2012).
Google Scholar
Florou, K. et al. The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmos. Chem. Phys. 17, 3145–3163 (2017).
Google Scholar
Cheng, Y., Ma, Y. & Hu, D. Tracer-based source apportioning of atmospheric organic carbon and the influence of anthropogenic emissions on secondary organic aerosol formation in Hong Kong. Atmos. Chem. Phys. 21, 10589–10608 (2021).
Google Scholar
Huang, W. et al. Chemical characterization of highly functionalized organonitrates contributing to night-time organic aerosol mass loadings and particle growth. Environ. Sci. Technol. 53, 1165–1174 (2019).
Google Scholar
Kiendler-Scharr, A. et al. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophys. Res. Lett. 43, 7735–7744 (2016).
Google Scholar
Tsimpidi, A. P., Karydis, V. A., Pandis, S. N. & Lelieveld, J. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets. Atmos. Chem. Phys. 16, 8939–8962 (2016).
Google Scholar
Kodros, J. K. et al. Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proc. Natl Acad. Sci. USA 117, 33028–33033 (2020).
Google Scholar
Richardson, D. et al. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 5, 23 (2022).
Google Scholar
Tian, J., Chen, X., Cao, Y. & Chen, F. Satellite observational evidence of contrasting changes in northern Eurasian wildfires from 2003 to 2020. Remote Sens. 14, 4180 (2022).
Google Scholar
Bertelsen, N. & Vad Mathiesen, B. EU-28 residential heat supply and consumption: historical development and status. Energies 13, 1894 (2020).
Google Scholar
Mishra, S. et al. Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nat. Geosci. 16, 224–230 (2023).
Google Scholar
Steffen, B. & Patt, A. A historical turning point? Early evidence on how the Russia-Ukraine war changes public support for clean energy policies. Energy Res. Soc. Sci. 91, 102758 (2022).
Google Scholar
Tan, Z. et al. Seasonal variation of nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany. Atmos. Chem. Phys. Discuss. 2022, 1–30 (2022).
Google Scholar
Cho, C. et al. Experimental chemical budgets of OH, HO2 and RO2 radicals in rural air in West-Germany during the JULIAC campaign 2019. EGUsphere 2022, 1–51 (2022).
Bohn, B. & Zilken, H. Model-aided radiometric determination of photolysis frequencies in a sunlit atmosphere simulation chamber. Atmos. Chem. Phys. 5, 191–206 (2005).
Google Scholar
Bohn, B., Rohrer, F., Brauers, T. & Wahner, A. Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 493–503 (2005).
Google Scholar
Hildebrandt, L. et al. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment-2008. Atmos. Chem. Phys. 10, 4167–4186 (2010).
Google Scholar
Brownwood, B. et al. Gas-particle partitioning and SOA yields of organonitrate products from NO3-initiated oxidation of isoprene under varied chemical regimes. ACS Earth Space Chem. 5, 785–800 (2021).
Google Scholar
Gilardoni, S. et al. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proc. Natl Acad. Sci. USA 113, 10013–10018 (2016).
Google Scholar
Ge, X. L., Zhang, Q., Sun, Y. L., Ruehl, C. R. & Setyan, A. Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environ. Chem. 9, 221–235 (2012).
Google Scholar
Fountoukis, C. et al. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmos. Chem. Phys. 9, 2141–2156 (2009).
Google Scholar
Nowak, J. B. et al. Analysis of urban gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time Characterization Experiment (ANARChE). J. Geophys. Res. Atmos. 111, D17308 (2006).
Google Scholar
Li, C. et al. Formation of secondary brown carbon in biomass burning aerosol proxies through NO3 radical reactions. Environ. Sci. Technol. 54, 1395–1405 (2020).
Google Scholar
Kostenidou, E., Lee, B.-H., Engelhart, G. J., Pierce, J. R. & Pandis, S. N. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. Environ. Sci. Technol. 43, 4884–4889 (2009).
Google Scholar
Boyd, C. M., Nah, T., Xu, L., Berkemeier, T. & Ng, N. L. Secondary Organic Aerosol (SOA) from nitrate radical oxidation of monoterpenes: effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. Environ. Sci. Technol. 51, 7831–7841 (2017).
Google Scholar
Hao, L. et al. Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmos. Chem. Phys. 18, 17705–17716 (2018).
Google Scholar
Huffman, J. A. et al. Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmos. Chem. Phys. 9, 7161–7182 (2009).
Google Scholar
Pye, H. O. T. et al. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res.: Atmos. 114, D01205 (2009).
Zuend, A., Marcolli, C., Peter, T. & Seinfeld, J. H. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmos. Chem. Phys. 10, 7795–7820 (2010).
Google Scholar
Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H. & Chan, C. K. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 15, 37–53 (2015).
Google Scholar
Chen, Q. et al. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmos. Chem. Phys. 15, 3687–3701 (2015).
Google Scholar
Paglione, M. et al. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmos. Chem. Phys. 14, 25–45 (2014).
Google Scholar
Thamban, N. M. et al. Evolution of aerosol size and composition in the indo-gangetic plain: size-resolved analysis of high-resolution aerosol mass spectra. ACS Earth Space Chem. 3, 823–832 (2019).
Google Scholar
Zhang, Y. J. et al. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos. Chem. Phys. 15, 1331–1349 (2015).
Google Scholar
Carter, T. S. et al. An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity. Atmos. Chem. Phys. 22, 12093–12111 (2022).
Google Scholar
Decker, Z. C. J. et al. Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmos. Chem. Phys. 21, 16293–16317 (2021).
Google Scholar
Finewax, Z., de Gouw, J. A. & Ziemann, P. J. Identification and quantification of 4-nitrocatechol formed from OH and NO3 radical-initiated reactions of catechol in air in the presence of NOx: implications for secondary organic aerosol formation from biomass burning. Environ. Sci. Technol. 52, 1981–1989 (2018).
Google Scholar
Mayorga, R. J., Zhao, Z. & Zhang, H. Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: implications for nitration mechanisms and brown carbon formation. Atmos. Environ. 244, 117910 (2021).
Google Scholar
Rohrer, F. et al. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 2189–2201 (2005).
Google Scholar
Paatero, P. & Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994).
Google Scholar
Crippa, M. et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 14, 6159–6176 (2014).
Google Scholar
Dai, Q. et al. Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX. Atmos. Chem. Phys. 19, 9641–9661 (2019).
Google Scholar
Canonaco, F. et al. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 6, 3649–3661 (2013).
Google Scholar
Paatero, P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8, 854–888 (1999).
Canagaratna, M. R. et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos. Chem. Phys. 15, 253–272 (2015).
Google Scholar
Brown, S. S. et al. Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. J. Geophys. Res. Atmos. 108, n/a–n/a (2003).
Google Scholar
Rollins, A. W. et al. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 9, 6685–6703 (2009).
Google Scholar
Hallquist, M., Wängberg, I., Ljungström, E., Barnes, I. & Becker, K. Aerosol and product yields from NO3 radical-initiated oxidation of selected monoterpenes. Environ. Sci. Technol. 33, 553–559 (1999).
Google Scholar
Mutzel, A. et al. Importance of secondary organic aerosol formation of α-pinene, limonene, and m-cresol comparing day- and nighttime radical chemistry. Atmos. Chem. Phys. 21, 8479–8498 (2021).
Google Scholar
Day, D. A. et al. Secondary organic aerosol mass yields from NO3 oxidation of α-pinene And Δ-carene: effect of RO2 radical fate. J. Phys. Chem. A 126, 7309–7330 (2022).
Google Scholar
Fry, J. L. et al. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. Environ. Sci. Technol. 48, 11944–11953 (2014).
Google Scholar
Kulmala, M. et al. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 11, 13061–13143 (2011).
Google Scholar
Moore, D. J. T. Isentropic Analysis and Interpretation: Isentropic Analysis Techniques, Basic Concepts (National Weather Service Training Center, 1999).
Batchvarova, E. & Gryning, S.-E. An applied model for the height of the daytime mixed layer and the entrainment zone. Bound.-Layer. Meteorol. 71, 311–323 (1994).
Google Scholar
Hass, H., Jakobs, H. & Memmesheimer, M. Analysis of a regional model (EURAD) near surface gas concentration predictions using observations from networks. Meteorol. Atmos. Phys. 57, 173–200 (1995).
Google Scholar
Memmesheimer, M. et al. Long-term simulations of particulate matter in Europe on different scales using sequential nesting of a regional model. Int. J. Environ. Pollut. 22, 108–132 (2004).
Google Scholar
Elbern, H., Strunk, A., Schmidt, H. & Talagrand, O. Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys. 7, 3749–3769 (2007).
Google Scholar
Skamarock, W. C. et al. A description of the advanced research WRF version 3. UCAR 27, 3–27 (2008).
Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M. & Denier van der Gon, H. A. C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976 (2014).
Google Scholar
Guenther, A. B. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).
Google Scholar
Ackermann, I. J., Hass, H., Schell, B. & Binkowski, F. S. Regional modelling of particulate matter with MADE. Environ. Manag. Health 10, 201–208 (1999).
Google Scholar
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S. & Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 106, 28275–28293 (2001).
Google Scholar
Li, Y. P. et al. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008. Atmos. Chem. Phys. 13, 6289–6304 (2013).
Google Scholar
Palm, B. B. et al. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proc. Natl Acad. Sci. USA 117, 29469–29477 (2020).
Google Scholar
Alvarez, D. JUWELS cluster and booster: exascale pathfinder with modular supercomputing architecture at juelich supercomputing Centre. J. Large-scale Res. Facilities JLSRF 7, A183–A183 (2021).
Google Scholar
Aiken, A. C. et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 9, 6633–6653 (2009).
Google Scholar
Cubison, M. J. et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 11, 12049–12064 (2011).
Google Scholar
link