Observational evidence reveals the significance of nocturnal chemistry in seasonal secondary organic aerosol formation

0
Observational evidence reveals the significance of nocturnal chemistry in seasonal secondary organic aerosol formation
  • Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801 (2007).

    Article 

    Google Scholar 

  • Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236 (2009).

    Article 
    CAS 

    Google Scholar 

  • Mahowald, N. Aerosol indirect effect on biogeochemical cycles and climate. Science 334, 794–796 (2011).

    Article 
    CAS 

    Google Scholar 

  • Nel, A. Air pollution-related illness: effects of particles. Science 308, 804–806 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ziemann, P. J. & Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41, 6582–6605 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hodzic, A. et al. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys. 16, 7917–7941 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal. Bioanal. Chem. 401, 3045–3067 (2011).

    Article 
    CAS 

    Google Scholar 

  • Crippa, M. et al. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos. Chem. Phys. 13, 961–981 (2013).

    Article 

    Google Scholar 

  • Mohr, C. et al. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos. Chem. Phys. 12, 1649–1665 (2012).

    Article 
    CAS 

    Google Scholar 

  • Canonaco, F., Slowik, J. G., Baltensperger, U. & Prévôt, A. S. H. Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmos. Chem. Phys. 15, 6993–7002 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sun, Y. L. et al. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmos. Chem. Phys. 12, 8537–8551 (2012).

    Article 
    CAS 

    Google Scholar 

  • Xu, L. et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl Acad. Sci. USA 112, E4506–E4507 (2015).

    Article 

    Google Scholar 

  • Chen, G. et al. Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window. Atmos. Chem. Phys. 21, 15081–15101 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ng, N. L. et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem. Phys. 8, 4117–4140 (2008).

    Article 
    CAS 

    Google Scholar 

  • Fry, J. L. et al. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmos. Chem. Phys. 9, 1431–1449 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hoyle, C. R., Berntsen, T., Myhre, G. & Isaksen, I. S. A. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2. Atmos. Chem. Phys. 7, 5675–5694 (2007).

    Article 
    CAS 

    Google Scholar 

  • Pye, H. O. T., Chan, A. W. H., Barkley, M. P. & Seinfeld, J. H. Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 10, 11261–11276 (2010).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmos. Chem. Phys. 19, 14755–14776 (2019).

    Article 
    CAS 

    Google Scholar 

  • Saarikoski, S. et al. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. Atmos. Chem. Phys. 12, 8401–8421 (2012).

    Article 
    CAS 

    Google Scholar 

  • Florou, K. et al. The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmos. Chem. Phys. 17, 3145–3163 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cheng, Y., Ma, Y. & Hu, D. Tracer-based source apportioning of atmospheric organic carbon and the influence of anthropogenic emissions on secondary organic aerosol formation in Hong Kong. Atmos. Chem. Phys. 21, 10589–10608 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, W. et al. Chemical characterization of highly functionalized organonitrates contributing to night-time organic aerosol mass loadings and particle growth. Environ. Sci. Technol. 53, 1165–1174 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kiendler-Scharr, A. et al. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophys. Res. Lett. 43, 7735–7744 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tsimpidi, A. P., Karydis, V. A., Pandis, S. N. & Lelieveld, J. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets. Atmos. Chem. Phys. 16, 8939–8962 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kodros, J. K. et al. Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proc. Natl Acad. Sci. USA 117, 33028–33033 (2020).

    Article 
    CAS 

    Google Scholar 

  • Richardson, D. et al. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 5, 23 (2022).

    Article 

    Google Scholar 

  • Tian, J., Chen, X., Cao, Y. & Chen, F. Satellite observational evidence of contrasting changes in northern Eurasian wildfires from 2003 to 2020. Remote Sens. 14, 4180 (2022).

    Article 

    Google Scholar 

  • Bertelsen, N. & Vad Mathiesen, B. EU-28 residential heat supply and consumption: historical development and status. Energies 13, 1894 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mishra, S. et al. Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nat. Geosci. 16, 224–230 (2023).

    Article 
    CAS 

    Google Scholar 

  • Steffen, B. & Patt, A. A historical turning point? Early evidence on how the Russia-Ukraine war changes public support for clean energy policies. Energy Res. Soc. Sci. 91, 102758 (2022).

    Article 

    Google Scholar 

  • Tan, Z. et al. Seasonal variation of nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany. Atmos. Chem. Phys. Discuss. 2022, 1–30 (2022).

    CAS 

    Google Scholar 

  • Cho, C. et al. Experimental chemical budgets of OH, HO2 and RO2 radicals in rural air in West-Germany during the JULIAC campaign 2019. EGUsphere 2022, 1–51 (2022).

    Google Scholar 

  • Bohn, B. & Zilken, H. Model-aided radiometric determination of photolysis frequencies in a sunlit atmosphere simulation chamber. Atmos. Chem. Phys. 5, 191–206 (2005).

    Article 
    CAS 

    Google Scholar 

  • Bohn, B., Rohrer, F., Brauers, T. & Wahner, A. Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 493–503 (2005).

    Article 
    CAS 

    Google Scholar 

  • Hildebrandt, L. et al. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment-2008. Atmos. Chem. Phys. 10, 4167–4186 (2010).

    Article 
    CAS 

    Google Scholar 

  • Brownwood, B. et al. Gas-particle partitioning and SOA yields of organonitrate products from NO3-initiated oxidation of isoprene under varied chemical regimes. ACS Earth Space Chem. 5, 785–800 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gilardoni, S. et al. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proc. Natl Acad. Sci. USA 113, 10013–10018 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ge, X. L., Zhang, Q., Sun, Y. L., Ruehl, C. R. & Setyan, A. Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environ. Chem. 9, 221–235 (2012).

    Article 
    CAS 

    Google Scholar 

  • Fountoukis, C. et al. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmos. Chem. Phys. 9, 2141–2156 (2009).

    Article 
    CAS 

    Google Scholar 

  • Nowak, J. B. et al. Analysis of urban gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time Characterization Experiment (ANARChE). J. Geophys. Res. Atmos. 111, D17308 (2006).

    Article 

    Google Scholar 

  • Li, C. et al. Formation of secondary brown carbon in biomass burning aerosol proxies through NO3 radical reactions. Environ. Sci. Technol. 54, 1395–1405 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kostenidou, E., Lee, B.-H., Engelhart, G. J., Pierce, J. R. & Pandis, S. N. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. Environ. Sci. Technol. 43, 4884–4889 (2009).

    Article 
    CAS 

    Google Scholar 

  • Boyd, C. M., Nah, T., Xu, L., Berkemeier, T. & Ng, N. L. Secondary Organic Aerosol (SOA) from nitrate radical oxidation of monoterpenes: effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. Environ. Sci. Technol. 51, 7831–7841 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hao, L. et al. Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmos. Chem. Phys. 18, 17705–17716 (2018).

    Article 
    CAS 

    Google Scholar 

  • Huffman, J. A. et al. Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmos. Chem. Phys. 9, 7161–7182 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pye, H. O. T. et al. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res.: Atmos. 114, D01205 (2009).

    Google Scholar 

  • Zuend, A., Marcolli, C., Peter, T. & Seinfeld, J. H. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmos. Chem. Phys. 10, 7795–7820 (2010).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H. & Chan, C. K. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 15, 37–53 (2015).

    Article 

    Google Scholar 

  • Chen, Q. et al. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmos. Chem. Phys. 15, 3687–3701 (2015).

    Article 
    CAS 

    Google Scholar 

  • Paglione, M. et al. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmos. Chem. Phys. 14, 25–45 (2014).

    Article 

    Google Scholar 

  • Thamban, N. M. et al. Evolution of aerosol size and composition in the indo-gangetic plain: size-resolved analysis of high-resolution aerosol mass spectra. ACS Earth Space Chem. 3, 823–832 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. J. et al. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos. Chem. Phys. 15, 1331–1349 (2015).

    Article 

    Google Scholar 

  • Carter, T. S. et al. An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity. Atmos. Chem. Phys. 22, 12093–12111 (2022).

    Article 
    CAS 

    Google Scholar 

  • Decker, Z. C. J. et al. Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmos. Chem. Phys. 21, 16293–16317 (2021).

    Article 
    CAS 

    Google Scholar 

  • Finewax, Z., de Gouw, J. A. & Ziemann, P. J. Identification and quantification of 4-nitrocatechol formed from OH and NO3 radical-initiated reactions of catechol in air in the presence of NOx: implications for secondary organic aerosol formation from biomass burning. Environ. Sci. Technol. 52, 1981–1989 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mayorga, R. J., Zhao, Z. & Zhang, H. Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: implications for nitration mechanisms and brown carbon formation. Atmos. Environ. 244, 117910 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rohrer, F. et al. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 2189–2201 (2005).

    Article 
    CAS 

    Google Scholar 

  • Paatero, P. & Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994).

    Article 

    Google Scholar 

  • Crippa, M. et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 14, 6159–6176 (2014).

    Article 

    Google Scholar 

  • Dai, Q. et al. Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX. Atmos. Chem. Phys. 19, 9641–9661 (2019).

    Article 
    CAS 

    Google Scholar 

  • Canonaco, F. et al. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 6, 3649–3661 (2013).

    Article 

    Google Scholar 

  • Paatero, P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8, 854–888 (1999).

    Google Scholar 

  • Canagaratna, M. R. et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos. Chem. Phys. 15, 253–272 (2015).

    Article 

    Google Scholar 

  • Brown, S. S. et al. Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. J. Geophys. Res. Atmos. 108, n/a–n/a (2003).

    Article 

    Google Scholar 

  • Rollins, A. W. et al. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 9, 6685–6703 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hallquist, M., Wängberg, I., Ljungström, E., Barnes, I. & Becker, K. Aerosol and product yields from NO3 radical-initiated oxidation of selected monoterpenes. Environ. Sci. Technol. 33, 553–559 (1999).

    Article 
    CAS 

    Google Scholar 

  • Mutzel, A. et al. Importance of secondary organic aerosol formation of α-pinene, limonene, and m-cresol comparing day- and nighttime radical chemistry. Atmos. Chem. Phys. 21, 8479–8498 (2021).

    Article 
    CAS 

    Google Scholar 

  • Day, D. A. et al. Secondary organic aerosol mass yields from NO3 oxidation of α-pinene And Δ-carene: effect of RO2 radical fate. J. Phys. Chem. A 126, 7309–7330 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fry, J. L. et al. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. Environ. Sci. Technol. 48, 11944–11953 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kulmala, M. et al. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 11, 13061–13143 (2011).

    Article 
    CAS 

    Google Scholar 

  • Moore, D. J. T. Isentropic Analysis and Interpretation: Isentropic Analysis Techniques, Basic Concepts (National Weather Service Training Center, 1999).

  • Batchvarova, E. & Gryning, S.-E. An applied model for the height of the daytime mixed layer and the entrainment zone. Bound.-Layer. Meteorol. 71, 311–323 (1994).

    Article 

    Google Scholar 

  • Hass, H., Jakobs, H. & Memmesheimer, M. Analysis of a regional model (EURAD) near surface gas concentration predictions using observations from networks. Meteorol. Atmos. Phys. 57, 173–200 (1995).

    Article 

    Google Scholar 

  • Memmesheimer, M. et al. Long-term simulations of particulate matter in Europe on different scales using sequential nesting of a regional model. Int. J. Environ. Pollut. 22, 108–132 (2004).

    Article 
    CAS 

    Google Scholar 

  • Elbern, H., Strunk, A., Schmidt, H. & Talagrand, O. Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys. 7, 3749–3769 (2007).

    Article 
    CAS 

    Google Scholar 

  • Skamarock, W. C. et al. A description of the advanced research WRF version 3. UCAR 27, 3–27 (2008).

    Google Scholar 

  • Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar 

  • Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M. & Denier van der Gon, H. A. C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976 (2014).

    Article 

    Google Scholar 

  • Guenther, A. B. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    Article 

    Google Scholar 

  • Ackermann, I. J., Hass, H., Schell, B. & Binkowski, F. S. Regional modelling of particulate matter with MADE. Environ. Manag. Health 10, 201–208 (1999).

    Article 

    Google Scholar 

  • Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S. & Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 106, 28275–28293 (2001).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. P. et al. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008. Atmos. Chem. Phys. 13, 6289–6304 (2013).

    Article 

    Google Scholar 

  • Palm, B. B. et al. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proc. Natl Acad. Sci. USA 117, 29469–29477 (2020).

    Article 
    CAS 

    Google Scholar 

  • Alvarez, D. JUWELS cluster and booster: exascale pathfinder with modular supercomputing architecture at juelich supercomputing Centre. J. Large-scale Res. Facilities JLSRF 7, A183–A183 (2021).

    Article 

    Google Scholar 

  • Aiken, A. C. et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 9, 6633–6653 (2009).

    Article 
    CAS 

    Google Scholar 

  • Cubison, M. J. et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 11, 12049–12064 (2011).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *