Impact of various aggregation kinetics on thermophoretic velocity of asphaltene deposition
Tian, Y. et al. Characterisation by ESI FT-ICR MS of heteroatomic compounds in catalytic hydropyrolysates released from marine crude oil asphaltenes. Org. Geochem. 167, 104391 (2022).
Google Scholar
Ilyin, S. O., Ignatenko, V. Y., Kostyuk, A. V., Levin, I. S. & Bondarenko, G. N. Deasphalting of heavy crude oil by hexamethyldisiloxane: The effect of a solvent/oil ratio on the structure, composition, and properties of precipitated asphaltenes. J. Pet. Sci. Eng. 208, 109329 (2022).
Google Scholar
Shahsavani, B., Ahmadi, P., Malayeri, M. R., Riazi, M. & Safian, G. A. A conceptual modeling to predict asphaltene molecules fate within an annulus control volume. J. Mol. Liq. 292, 111414 (2019).
Google Scholar
Taheri-Shakib, J. et al. Experimental and mathematical model evaluation of asphaltene fractionation based on adsorption in porous media: Dolomite reservoir rock. Fuel 245, 570–585 (2019).
Google Scholar
Taheri-Shakib, J. et al. Experimental and mathematical model evaluation of asphaltene fractionation based on adsorption in porous media: Part 1. Calcite reservoir rock. J. Pet. Sci. Eng. 177, 24–40 (2019).
Google Scholar
Adebiyi, F. M. An insight into asphaltene precipitation, deposition and management stratagems in petroleum industry. J. Pipeline Sci. Eng. 1, 419–427 (2021).
Google Scholar
Vafaie-Sefti, M., Mousavi-Dehghani, S. A. & Mohammad-Zadeh, M. A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilib. 206, 1–11 (2003).
Google Scholar
Mohammed, I., Mahmoud, M., Al Shehri, D., El-Husseiny, A. & Alade, O. Asphaltene precipitation and deposition: A critical review. J. Pet. Sci. Eng. 197, 107956 (2021).
Google Scholar
Akbar, S. H. & Saleh, A. A. A comprehensive approach to solve asphaltene deposition problem in some deep wells. Middle East Oil Show (1989).
Google Scholar
Kuang, J. et al. Strategies for Mitigation and Remediation of Asphaltene Deposition. Asphaltene Deposition (CRC Press, 2018). https://doi.org/10.1201/9781315268866-7.
Google Scholar
Kamkar, M. & Natale, G. A review on novel applications of asphaltenes: A valuable waste. Fuel 285, 119272 (2021).
Google Scholar
Fakher, S., Ahdaya, M., Elturki, M. & Imqam, A. Critical review of asphaltene properties and factors impacting its stability in crude oil. J. Pet. Explor. Prod. Technol. 10, 1183–1200 (2020).
Google Scholar
Fakher, S., Yousef, A., Al-Sakkaf, A. & Eldakar, S. Asphaltene onset pressure measurement and calculation techniques: A review. Petroleum (2023).
Google Scholar
Nikoo, A. H., Kalantariasl, A. & Malayeri, M. R. Propensity of gypsum precipitation using surface energy approach. J. Mol. Liq. 300, 112320 (2020).
Google Scholar
Najjar, P. A. M. Z., Mohammadi, S., Mirzayi, B., Mahmoudi Alemi, F. & Ghanbarpour, O. A mechanistic study of asphaltene formation and aggregation in presence of metallic-based nanoparticles. Geoenergy Sci. Eng. 234, 212637 (2024).
Google Scholar
Mullins, O. C. The modified Yen model. Energy Fuels 24, 2179–2207 (2010).
Google Scholar
Mullins, O. C. et al. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26, 3986–4003 (2012).
Google Scholar
Epstein, N. Elements of particle deposition onto nonporous solid surfaces parallel to suspension flows. Exp. Therm. Fluid Sci. 14, 323–334 (1997).
Google Scholar
Wood, N. B. The mass transfer of particles and acid vapour to cooled surfaces. J. Aerosol Sci. 76, 76–93 (1981).
Geelhoed, P., Westerweel, J., Kjelstrup, S. & Bedeaux, D. Thermophoresis. In Encyclopedia of Microfluidics and Nanofluidics 2061–2064 (Springer US, 2008). https://doi.org/10.1007/978-0-387-48998-8_1582.
Chen, F. & Lai, A. C. K. An Eulerian model for particle deposition under electrostatic and turbulent conditions. J. Aerosol Sci. 35, 47–62 (2004).
Google Scholar
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 1991).
Mahmoodi, L., Nikoo, A. H., Malayeri, M. R. & Riazi, M. Characterization of asphaltene removal mechanisms from well columns using surface energy. Geoenergy Sci. Eng. 225, 211679 (2023).
Google Scholar
Enayat, S. et al. On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition. Fuel 260, 116250 (2020).
Google Scholar
Mirzayi, B., Mousavi Dehghani, S. A. & Chakan, M. B. Modeling of asphaltene deposition in pipelines. J. Pet. Sci. Technol. 3, 15–23 (2013).
Rastegari, K., Svrcek, W. Y. & Yarranton, H. W. Kinetics of asphaltene flocculation. Ind. Eng. Chem. Res. 43, 6861–6870 (2004).
Google Scholar
Sun, W., Wang, W., Gu, Y., Xu, X. & Gong, J. Study on the wax/asphaltene aggregation with diffusion limited aggregation model. Fuel 191, 106–113 (2017).
Google Scholar
Maqbool, T. Understanding the Kinetics of Asphaltene Precipitation from Crude Oils (The University of Michigan, 2011).
Derjaguin, B. & Landau, L. D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica URSS. 14, 633–662 (1941).
Verwey, E. J. W. & Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids (Elsevier Pub. Co. Inc, 1948).
van Oss, C. J., Chaudhury, M. K. & Good, R. J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941 (1988).
Google Scholar
van Oss, C. J. Interfacial Forces in Aqueous Media (Marcel Dekker Inc., 1994).
van Oss, C. J., Good, R. J. & Chaudhury, M. K. Determination of the hydrophobia interaction energy-application to separation processes. Sep. Sci. Technol. 22, 1–24 (1987).
Google Scholar
Li, X., Guo, Y., Boek, E. S. & Guo, X. Experimental study on kinetics of asphaltene aggregation in a microcapillary. Energy Fuels 31, 9006–9015 (2017).
Google Scholar
Mohammadi, S., Rashidi, F., Ghazanfari, M. H. & Mousavi-Dehghani, S. A. Kinetics of asphaltene aggregation phenomena in live oils. J. Mol. Liq. 222, 359–369 (2016).
Google Scholar
Seifried, C. M., Crawshaw, J. & Boek, E. S. Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy. Energy Fuels 27, 1865–1872 (2013).
Google Scholar
Yudin, I. K. et al. Mechanisms of asphaltene aggregation in toluene–heptane mixtures. J. Pet. Sci. Eng. 20, 297–301 (1998).
Google Scholar
Hoepfner, M. P. & Fogler, H. S. Multi-scale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir 29, 15423–15432 (2013).
Google Scholar
Asnaghi, D., Carpineti, M., Giglio, M. & Sozzi, M. Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys. Rev. A 45, 1018–1023 (1992).
Google Scholar
Hammond, C. B. et al. Mesoscale aggregation of sulfur-rich asphaltenes: In situ microscopy and coarse-grained molecular simulation. Langmuir 38, 6896–6910 (2022).
Google Scholar
Salehzadeh, M., Husein, M. M., Ghotbi, C., Taghikhani, V. & Dabir, B. Investigating the role of asphaltenes structure on their aggregation and adsorption/deposition behavior. Geoenergy Sci. Eng. 230, 212204 (2023).
Google Scholar
Yudin, I. K. et al. Crossover kinetics of asphaltene aggregation in hydrocarbon solutions. Phys. A Stat. Mech. Appl. 251, 235–244 (1998).
Google Scholar
Hung, J., Castillo, J. & Reyes, A. Kinetics of asphaltene aggregation in toluene−heptane mixtures studied by confocal microscopy. Energy Fuels 19, 898–904 (2005).
Google Scholar
Soulgani, B. S., Reisi, F. & Norouzi, F. Investigation into mechanisms and kinetics of asphaltene aggregation in toluene/n-hexane mixtures. Pet. Sci. 17, 457–466 (2020).
Google Scholar
Sullivan, M. et al. A fast measurement of asphaltene onset pressure. SPE Reserv. Eval. Eng. 23, 0962–0978 (2020).
Google Scholar
Hammond, C. B. Real time investigations of aggregation of sulfur-rich asphaltene. (2020).
Mehrabianfar, P. et al. Introduction of a novel mathematical model for the prediction of the preformed particle gel’s swelling in the presence of monovalent and divalent ions. Sci. Rep. 14(1), 1–16 (2024).
Google Scholar
Quainoo, A. K. & Imqam, A. Long-time kinetic impact on key factors affecting asphaltene precipitation. Energy Fuels 36, 11108–11122 (2022).
Google Scholar
Romero Yanes, J. F. Study of Gas Addition Effects on the Phase Behavior of Petroleum Mixtures at High Pressure and High Temperature Conditions (Federal University of Ceará, 2021).
Soleymanzadeh, A., Yousefi, M., Kord, S. & Mohammadzadeh, O. A review on methods of determining onset of asphaltene precipitation. J. Pet. Explor. Prod. Technol. 9, 1375–1396 (2019).
Google Scholar
Zheng, F. Thermophoresis of spherical and non-spherical particles: A review of theories and experiments. Adv. Colloid Interface Sci. 97, 255–278 (2002).
Google Scholar
Abarham, M. et al. An analytical study of thermophoretic particulate deposition in turbulent pipe flows. Aerosol Sci. Technol. 44, 785–795 (2010).
Google Scholar
Talbot, L., Cheng, R. K., Schefer, R. W. & Willis, D. R. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980).
Google Scholar
He, C. & Ahmadi, G. Particle deposition with thermophoresis in laminar and turbulent duct flows. Aerosol Sci. Technol. 29, 525–546 (2007).
Google Scholar
Abarham, M. et al. Review of soot deposition and removal mechanisms in EGR coolers. SAE Technical Papers 690–704 (2010).
Mohammadi, M., Bahrami, M. & Torkaman, M. The effect of temperature on the size and the deposition of asphaltene particles. SPE J. 28, 3117–3127 (2023).
Google Scholar
Li, M. et al. Effect of temperature on asphaltene precipitation in crude oils from Xinjiang oilfield. ACS Omega 7, 36244–36253 (2022).
Google Scholar
Hosseini-Moghadam, S. M. A., Bahrami, M., Torkaman, M. & Mohammadi, M. Experimental evaluation of kinetic behavior of asphaltene particles: Effect of temperature, shear stress, and inhibitors. SPE J. 29, 299–313 (2024).
Google Scholar
link