Impact of various aggregation kinetics on thermophoretic velocity of asphaltene deposition

0
Impact of various aggregation kinetics on thermophoretic velocity of asphaltene deposition
  • Tian, Y. et al. Characterisation by ESI FT-ICR MS of heteroatomic compounds in catalytic hydropyrolysates released from marine crude oil asphaltenes. Org. Geochem. 167, 104391 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ilyin, S. O., Ignatenko, V. Y., Kostyuk, A. V., Levin, I. S. & Bondarenko, G. N. Deasphalting of heavy crude oil by hexamethyldisiloxane: The effect of a solvent/oil ratio on the structure, composition, and properties of precipitated asphaltenes. J. Pet. Sci. Eng. 208, 109329 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shahsavani, B., Ahmadi, P., Malayeri, M. R., Riazi, M. & Safian, G. A. A conceptual modeling to predict asphaltene molecules fate within an annulus control volume. J. Mol. Liq. 292, 111414 (2019).

    Article 
    CAS 

    Google Scholar 

  • Taheri-Shakib, J. et al. Experimental and mathematical model evaluation of asphaltene fractionation based on adsorption in porous media: Dolomite reservoir rock. Fuel 245, 570–585 (2019).

    Article 
    CAS 

    Google Scholar 

  • Taheri-Shakib, J. et al. Experimental and mathematical model evaluation of asphaltene fractionation based on adsorption in porous media: Part 1. Calcite reservoir rock. J. Pet. Sci. Eng. 177, 24–40 (2019).

    Article 
    CAS 

    Google Scholar 

  • Adebiyi, F. M. An insight into asphaltene precipitation, deposition and management stratagems in petroleum industry. J. Pipeline Sci. Eng. 1, 419–427 (2021).

    Article 

    Google Scholar 

  • Vafaie-Sefti, M., Mousavi-Dehghani, S. A. & Mohammad-Zadeh, M. A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilib. 206, 1–11 (2003).

    Article 
    CAS 

    Google Scholar 

  • Mohammed, I., Mahmoud, M., Al Shehri, D., El-Husseiny, A. & Alade, O. Asphaltene precipitation and deposition: A critical review. J. Pet. Sci. Eng. 197, 107956 (2021).

    Article 
    CAS 

    Google Scholar 

  • Akbar, S. H. & Saleh, A. A. A comprehensive approach to solve asphaltene deposition problem in some deep wells. Middle East Oil Show (1989).

    Article 

    Google Scholar 

  • Kuang, J. et al. Strategies for Mitigation and Remediation of Asphaltene Deposition. Asphaltene Deposition (CRC Press, 2018). https://doi.org/10.1201/9781315268866-7.

    Book 

    Google Scholar 

  • Kamkar, M. & Natale, G. A review on novel applications of asphaltenes: A valuable waste. Fuel 285, 119272 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fakher, S., Ahdaya, M., Elturki, M. & Imqam, A. Critical review of asphaltene properties and factors impacting its stability in crude oil. J. Pet. Explor. Prod. Technol. 10, 1183–1200 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fakher, S., Yousef, A., Al-Sakkaf, A. & Eldakar, S. Asphaltene onset pressure measurement and calculation techniques: A review. Petroleum (2023).

    Article 

    Google Scholar 

  • Nikoo, A. H., Kalantariasl, A. & Malayeri, M. R. Propensity of gypsum precipitation using surface energy approach. J. Mol. Liq. 300, 112320 (2020).

    Article 
    CAS 

    Google Scholar 

  • Najjar, P. A. M. Z., Mohammadi, S., Mirzayi, B., Mahmoudi Alemi, F. & Ghanbarpour, O. A mechanistic study of asphaltene formation and aggregation in presence of metallic-based nanoparticles. Geoenergy Sci. Eng. 234, 212637 (2024).

    Article 
    CAS 

    Google Scholar 

  • Mullins, O. C. The modified Yen model. Energy Fuels 24, 2179–2207 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mullins, O. C. et al. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26, 3986–4003 (2012).

    Article 
    CAS 

    Google Scholar 

  • Epstein, N. Elements of particle deposition onto nonporous solid surfaces parallel to suspension flows. Exp. Therm. Fluid Sci. 14, 323–334 (1997).

    Article 
    CAS 

    Google Scholar 

  • Wood, N. B. The mass transfer of particles and acid vapour to cooled surfaces. J. Aerosol Sci. 76, 76–93 (1981).

    Google Scholar 

  • Geelhoed, P., Westerweel, J., Kjelstrup, S. & Bedeaux, D. Thermophoresis. In Encyclopedia of Microfluidics and Nanofluidics 2061–2064 (Springer US, 2008). https://doi.org/10.1007/978-0-387-48998-8_1582.

  • Chen, F. & Lai, A. C. K. An Eulerian model for particle deposition under electrostatic and turbulent conditions. J. Aerosol Sci. 35, 47–62 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 1991).

    Google Scholar 

  • Mahmoodi, L., Nikoo, A. H., Malayeri, M. R. & Riazi, M. Characterization of asphaltene removal mechanisms from well columns using surface energy. Geoenergy Sci. Eng. 225, 211679 (2023).

    Article 
    CAS 

    Google Scholar 

  • Enayat, S. et al. On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition. Fuel 260, 116250 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mirzayi, B., Mousavi Dehghani, S. A. & Chakan, M. B. Modeling of asphaltene deposition in pipelines. J. Pet. Sci. Technol. 3, 15–23 (2013).

    Google Scholar 

  • Rastegari, K., Svrcek, W. Y. & Yarranton, H. W. Kinetics of asphaltene flocculation. Ind. Eng. Chem. Res. 43, 6861–6870 (2004).

    Article 
    CAS 

    Google Scholar 

  • Sun, W., Wang, W., Gu, Y., Xu, X. & Gong, J. Study on the wax/asphaltene aggregation with diffusion limited aggregation model. Fuel 191, 106–113 (2017).

    Article 
    CAS 

    Google Scholar 

  • Maqbool, T. Understanding the Kinetics of Asphaltene Precipitation from Crude Oils (The University of Michigan, 2011).

    Google Scholar 

  • Derjaguin, B. & Landau, L. D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica URSS. 14, 633–662 (1941).

    Google Scholar 

  • Verwey, E. J. W. & Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids (Elsevier Pub. Co. Inc, 1948).

    Google Scholar 

  • van Oss, C. J., Chaudhury, M. K. & Good, R. J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941 (1988).

    Article 

    Google Scholar 

  • van Oss, C. J. Interfacial Forces in Aqueous Media (Marcel Dekker Inc., 1994).

    Google Scholar 

  • van Oss, C. J., Good, R. J. & Chaudhury, M. K. Determination of the hydrophobia interaction energy-application to separation processes. Sep. Sci. Technol. 22, 1–24 (1987).

    Article 

    Google Scholar 

  • Li, X., Guo, Y., Boek, E. S. & Guo, X. Experimental study on kinetics of asphaltene aggregation in a microcapillary. Energy Fuels 31, 9006–9015 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mohammadi, S., Rashidi, F., Ghazanfari, M. H. & Mousavi-Dehghani, S. A. Kinetics of asphaltene aggregation phenomena in live oils. J. Mol. Liq. 222, 359–369 (2016).

    Article 
    CAS 

    Google Scholar 

  • Seifried, C. M., Crawshaw, J. & Boek, E. S. Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy. Energy Fuels 27, 1865–1872 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yudin, I. K. et al. Mechanisms of asphaltene aggregation in toluene–heptane mixtures. J. Pet. Sci. Eng. 20, 297–301 (1998).

    Article 
    CAS 

    Google Scholar 

  • Hoepfner, M. P. & Fogler, H. S. Multi-scale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir 29, 15423–15432 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asnaghi, D., Carpineti, M., Giglio, M. & Sozzi, M. Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys. Rev. A 45, 1018–1023 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hammond, C. B. et al. Mesoscale aggregation of sulfur-rich asphaltenes: In situ microscopy and coarse-grained molecular simulation. Langmuir 38, 6896–6910 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salehzadeh, M., Husein, M. M., Ghotbi, C., Taghikhani, V. & Dabir, B. Investigating the role of asphaltenes structure on their aggregation and adsorption/deposition behavior. Geoenergy Sci. Eng. 230, 212204 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yudin, I. K. et al. Crossover kinetics of asphaltene aggregation in hydrocarbon solutions. Phys. A Stat. Mech. Appl. 251, 235–244 (1998).

    Article 
    CAS 

    Google Scholar 

  • Hung, J., Castillo, J. & Reyes, A. Kinetics of asphaltene aggregation in toluene−heptane mixtures studied by confocal microscopy. Energy Fuels 19, 898–904 (2005).

    Article 
    CAS 

    Google Scholar 

  • Soulgani, B. S., Reisi, F. & Norouzi, F. Investigation into mechanisms and kinetics of asphaltene aggregation in toluene/n-hexane mixtures. Pet. Sci. 17, 457–466 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sullivan, M. et al. A fast measurement of asphaltene onset pressure. SPE Reserv. Eval. Eng. 23, 0962–0978 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hammond, C. B. Real time investigations of aggregation of sulfur-rich asphaltene. (2020).

  • Mehrabianfar, P. et al. Introduction of a novel mathematical model for the prediction of the preformed particle gel’s swelling in the presence of monovalent and divalent ions. Sci. Rep. 14(1), 1–16 (2024).

    Article 

    Google Scholar 

  • Quainoo, A. K. & Imqam, A. Long-time kinetic impact on key factors affecting asphaltene precipitation. Energy Fuels 36, 11108–11122 (2022).

    Article 
    CAS 

    Google Scholar 

  • Romero Yanes, J. F. Study of Gas Addition Effects on the Phase Behavior of Petroleum Mixtures at High Pressure and High Temperature Conditions (Federal University of Ceará, 2021).

    Google Scholar 

  • Soleymanzadeh, A., Yousefi, M., Kord, S. & Mohammadzadeh, O. A review on methods of determining onset of asphaltene precipitation. J. Pet. Explor. Prod. Technol. 9, 1375–1396 (2019).

    Article 

    Google Scholar 

  • Zheng, F. Thermophoresis of spherical and non-spherical particles: A review of theories and experiments. Adv. Colloid Interface Sci. 97, 255–278 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abarham, M. et al. An analytical study of thermophoretic particulate deposition in turbulent pipe flows. Aerosol Sci. Technol. 44, 785–795 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Talbot, L., Cheng, R. K., Schefer, R. W. & Willis, D. R. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980).

    Article 
    ADS 

    Google Scholar 

  • He, C. & Ahmadi, G. Particle deposition with thermophoresis in laminar and turbulent duct flows. Aerosol Sci. Technol. 29, 525–546 (2007).

    Article 
    ADS 

    Google Scholar 

  • Abarham, M. et al. Review of soot deposition and removal mechanisms in EGR coolers. SAE Technical Papers 690–704 (2010).

  • Mohammadi, M., Bahrami, M. & Torkaman, M. The effect of temperature on the size and the deposition of asphaltene particles. SPE J. 28, 3117–3127 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, M. et al. Effect of temperature on asphaltene precipitation in crude oils from Xinjiang oilfield. ACS Omega 7, 36244–36253 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosseini-Moghadam, S. M. A., Bahrami, M., Torkaman, M. & Mohammadi, M. Experimental evaluation of kinetic behavior of asphaltene particles: Effect of temperature, shear stress, and inhibitors. SPE J. 29, 299–313 (2024).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *